对抽象矩阵的运算可以转换为对该矩阵特征值的运算

一、题目题目 - 荒原之梦

已知 $3$ 阶矩阵 $A$ 满足 $A^{2} – A – 2E = O$, 且 $|A| = 2$. 将 $A$ 的第 $1$ 列的 $2$ 倍加到第 $3$ 列,再将第 $3$ 行的 $-2$ 倍加到第 $1$ 行得 $B$, 则 $|B + 3 E| = ?$

难度评级:

继续阅读“对抽象矩阵的运算可以转换为对该矩阵特征值的运算”

二次型的规范型不仅反映了二次型矩阵特征值的正负,还反映了二次型矩阵的秩

一、题目题目 - 荒原之梦

已知二次型 $f(x_{1}, x_{2}, x_{3})$ $=$ $(x_{1} + x_{2})^{2}$ $+$ $(x_{1} – 2x_{3})^{2}$ $+$ $(x_{2} + a x_{3})^{2}$ 的规范型为 $y_{1}^{2} + y_{2}^{2}$, 则 $a = ?$

难度评级:

继续阅读“二次型的规范型不仅反映了二次型矩阵特征值的正负,还反映了二次型矩阵的秩”

无穷小与有理化、积分、中值定理相结合的一道题目

一、题目题目 - 荒原之梦

当 $x \rightarrow 0$ 时,无穷小量:

$$
\begin{aligned}
& \alpha = \sqrt{1 + x \cos x} – \sqrt{1 + \sin x} \\
& \beta = \int _{0}^{e^{2x} – 1} \frac{\sin ^{2} t}{t} \mathrm{~d} t \\
& \gamma = \cos (\tan x) – \cos x
\end{aligned}
$$

的阶数由高到低次序为 ($\quad$)

难度评级:

继续阅读“无穷小与有理化、积分、中值定理相结合的一道题目”

不对称的矩阵不是正定矩阵,主对角线上有负数或者零元素的矩阵也不是正定矩阵

一、题目题目 - 荒原之梦

下列矩阵中为正定矩阵的是哪一个?

A. $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 1 \\ 0 & 0 & 2\end{array}\right)$

C. $\left(\begin{array}{lll}8 & 1 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & 5\end{array}\right)$

B. $\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & -6\end{array}\right)$

D. $\left(\begin{array}{lll}5 & 2 & 1 \\ 2 & 0 & 3 \\ 1 & 3 & 6\end{array}\right)$

难度评级:

继续阅读“不对称的矩阵不是正定矩阵,主对角线上有负数或者零元素的矩阵也不是正定矩阵”

不可逆矩阵乘上一个可逆矩阵得不可逆矩阵

一、题目题目 - 荒原之梦

已知矩阵 $A = \begin{pmatrix}
0 & 2 & a \\
1 & 0 & b \\
2 & 1 & 0
\end{pmatrix}$, 三维列向量 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 线性无关, 而 $A \alpha_{1}$, $A \alpha_{2}$, $A \alpha_{3}$ 线性相关, 则参数 $a$ 和 $b$ 应满足什么关系?

难度评级:

继续阅读“不可逆矩阵乘上一个可逆矩阵得不可逆矩阵”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress