2023年考研数二第10题解析:线性相关、齐次线性方程组

一、题目题目 - 荒原之梦

已知向量 $\alpha_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \alpha_{2}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right), \beta_{1}=\left(\begin{array}{l}2 \\ 5 \\ 9\end{array}\right), \beta_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, 若 $\gamma$ 既可由 $\alpha_{1}, \alpha_{2}$ 线性表示,也可由 $\beta_{1}, \beta_{2}$ 线性表示, 则 $\gamma = (\quad)$

(A) $k\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), k \in R$

(C) $k\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right), k \in R$

(B) $k\left(\begin{array}{c}3 \\ 5 \\ 10\end{array}\right), k \in R$

(D) $k\left(\begin{array}{l}1 \\ 5 \\ 8\end{array}\right), k \in R$

难度评级:

继续阅读“2023年考研数二第10题解析:线性相关、齐次线性方程组”

如何求解曲率圆的方程?

一、前言 前言 - 荒原之梦

曲率圆也称为“密切圆”,曲率圆描述了曲线在某一点处的弯曲程度。有关曲率圆的一些基础内容,可以查看荒原之梦考研数学的《什么是曲率?什么是曲率圆?》这篇文章。

在本文中,荒原之梦考研数学将给出计算曲线上某点处曲率圆方程的步骤和公式。

继续阅读“如何求解曲率圆的方程?”

2023年考研数二第09题解析:二次型的规范型

一、题目题目 - 荒原之梦

二次型 $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}-4\left(x_{2}-x_{3}\right)^{2}$ 的规范形为 ( )

(A) $y_{1}^{2}+y_{2}^{2}$

(C) $y_{1}^{2}+y_{2}^{2}-4 y_{3}^{2}$

(B) $y_{1}^{2}-y_{2}^{2}$

(D) $y_{1}^{2}+y_{2}^{2}-y_{3}^{2}$

难度评级:

继续阅读“2023年考研数二第09题解析:二次型的规范型”

2023年考研数二第08题解析:伴随矩阵的性质在分块矩阵上的推广

一、题目题目 - 荒原之梦

设 $A, B$ 为 $n$ 阶可逆矩阵, $E$ 为 $n$ 阶单位矩阵, $M^{*}$ 为矩阵 $M$ 的伴随矩阵,则 $\left(\begin{array}{ll}A & E \\ O & B\end{array}\right)^{*}=(\quad)$

(A) $\left(\begin{array}{cc}|A| B^{*} & -B^{*} A^{*} \\ 0 & A^{*} B^{*}\end{array}\right)$

(C) $\left(\begin{array}{cc}|B| A^{*} & -B^{*} A^{*} \\ 0 & |A| B^{*}\end{array}\right)$

(B) $\left(\begin{array}{cc}|A| B^{*} & -A^{*} B^{*} \\ 0 & |B| A^{*}\end{array}\right)$

(D) $\left(\begin{array}{cc}|B| A^{*} & -A^{*} B^{*} \\ 0 & |A| B^{*}\end{array}\right)$

难度评级:

继续阅读“2023年考研数二第08题解析:伴随矩阵的性质在分块矩阵上的推广”

2023年考研数二第07题解析:极值点与拐点和一阶导二阶导之间的关系

一、题目题目 - 荒原之梦

设函数 $f(x)=\left(x^{2}+a\right) e^{x}$, 若 $f(x)$ 没有极值点, 但曲线 $y=f(x)$ 有拐点, 则 $a$ 的取值范围是( )

(A) $[0,1)$

(C) $[1,2)$

(B) $[1,+\infty)$

(D) $[2,+\infty)$

难度评级:

继续阅读“2023年考研数二第07题解析:极值点与拐点和一阶导二阶导之间的关系”

2023年考研数二第06题解析:换元积分、指数函数的求导法则

一、题目题目 - 荒原之梦

若函数 $f(\alpha)=\int_{2}^{+\infty} \frac{1}{x(\ln x)^{\alpha+1}} \mathrm{~d} x$ 在 $\alpha=\alpha_{0}$ 处取得最小值, 则 $\alpha_{0}=?$

A. $-\frac{1}{\ln (\ln 2)}$

C. $\frac{1}{\ln 2}$

B. $-\ln (\ln 2)$

D. $\ln 2$

难度评级:

继续阅读“2023年考研数二第06题解析:换元积分、指数函数的求导法则”

2023年考研数二第05题解析:参数方程求导、导数存在性定理

一、题目题目 - 荒原之梦

设函数 $y=f(x)$ 由 $\left\{\begin{array}{l}x=2 t+|t| \\ y=|t| \sin t\end{array}\right.$ 确定, 则 ( )

(A) $f(x)$ 连续, $f^{\prime}(0)$ 不存在

(B) $f^{\prime}(0)$ 不存在, $f(x)$ 在 $x=0$ 处不连续

(C) $f^{\prime}(x)$ 连续, $f^{\prime \prime}(0)$ 不存在

(D) $f^{\prime \prime}(0)$ 存在, $f^{\prime \prime}(x)$ 在 $x=0$ 处不连续

难度评级:

继续阅读“2023年考研数二第05题解析:参数方程求导、导数存在性定理”

2023年考研数二第04题解析:二阶常系数微分方程解的性质

一、题目题目 - 荒原之梦

已知微分方程 $y^{\prime \prime}+a y^{\prime}+b y=0$ 的解在 $(-\infty,+\infty)$ 上有界, 则 $a, b$ 的取值范围为 ( )

(A) $a<0, b>0$

(C) $a=0, b>0$

(B) $a>0, b>0$

(D) $a=0, b<0$

难度评级:

继续阅读“2023年考研数二第04题解析:二阶常系数微分方程解的性质”

2023年考研数二第03题解析:数列比较大小

一、题目题目 - 荒原之梦

设数列 $\left\{x_{n}\right\} ,\left\{y_{n}\right\}$ 满足 $x_{1}=y_{1}=\frac{1}{2}, x_{n+1}=\sin x_{n}, y_{n+1}=y_{n}^{2}$, 当 $n \rightarrow \infty$ 时 ( )

(A) $x_{n}$ 是 $y_{n}$ 的高阶无穷小

(B) $y_{n}$ 是 $x_{n}$ 的高阶无穷小

(C) $x_{n}$ 是 $y_{n}$ 的等价无穷小

(D) $x_{n}$ 是 $y_{n}$ 的同阶但非等价无穷小

难度评级:

继续阅读“2023年考研数二第03题解析:数列比较大小”

2023年考研数二第02题解析:分段函数、导函数的性质

一、题目题目 - 荒原之梦

函数 $f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{1+x^{2}}}, x \leq 0 \\ (x+1) \cos x, x>0\end{array}\right.$ 的原函数为 ( )

(A) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}-x\right), x \leq 0 \\ (x+1) \cos x-\sin x, x>0\end{array}\right.$

(B) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}-x\right)+1, x \leq 0 \\ (x+1) \cos x-\sin x, x>0\end{array}\right.$

(C) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}-x\right), x \leq 0 \\ (x+1) \sin x+\cos x, x>0\end{array}\right.$

(D) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}+x\right)+1, x \leq 0 \\ (x+1) \sin x+\cos x, x>0\end{array}\right.$

难度评级:

继续阅读“2023年考研数二第02题解析:分段函数、导函数的性质”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress