问题
如果对矩阵 $\boldsymbol{A}_{m \times n}$ 实施一次 初 等 列 变 换 ,就相当于在 $\boldsymbol{\textcolor{orange}{A}}$ 的 哪 边 乘 以 一个相应的 $m$ 阶 初 等 矩 阵 ?选项
[A]. 左右两边[B]. 左边
[C]. 右边
[D]. 左边或者右边
$\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}} & \boldsymbol{O} \\ \boldsymbol{\textcolor{yellow}{C}} & \boldsymbol{\textcolor{cyan}{B}} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \\ \textcolor{red}{-}\boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \boldsymbol{\textcolor{yellow}{C}} \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \end{array}\right)$
$\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}} & \boldsymbol{\textcolor{yellow}{C}} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll} \boldsymbol{\textcolor{orange}{A}}^{-1} & \textcolor{red}{-}\boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} \boldsymbol{\textcolor{yellow}{C}} \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}^{-1} \end{array}\right)$
$\left(\begin{array}{ll} \boldsymbol{O} & \boldsymbol{\textcolor{orange}{A}} \\ \boldsymbol{\textcolor{cyan}{B}} & \boldsymbol{O} \end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{cc} \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}} \\ \boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \end{array}\right)$
$\left(\begin{array}{ll}\boldsymbol{\textcolor{orange}{A}} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}\end{array}\right)^{\textcolor{red}{-1}}$ $=$ $\left(\begin{array}{ll}\boldsymbol{\textcolor{orange}{A}}^{\textcolor{red}{-1}} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\textcolor{cyan}{B}}^{\textcolor{red}{-1}}\end{array}\right)$