问题
在线性代数中,非奇异矩阵指的是什么?选项
[A]. 转置矩阵[B]. 伴随矩阵
[C]. 不可逆矩阵
[D]. 可逆矩阵
设 $A$ 为 $n$ 阶矩阵,如果存在 $n$ 阶矩阵 $\boldsymbol{B}$, 使得:
$\boldsymbol{\textcolor{orange}{A}}$ $\boldsymbol{\textcolor{cyan}{B}}$ $=$ $\boldsymbol{\textcolor{cyan}{B}}$ $\boldsymbol{\textcolor{orange}{A}}$ $=$ $\boldsymbol{\textcolor{red}{E}}$
则称 $\boldsymbol{A}$ 为可逆矩阵或非奇异矩阵,并称 $\boldsymbol{B}$ 为 $\boldsymbol{A}$ 的逆矩阵,记作 $\boldsymbol{B}$ $=$ $\boldsymbol{A}^{-1}$.
当然,$\boldsymbol{A}$ 也可以称为 $\boldsymbol{B}$ 的逆矩阵,记作 $\boldsymbol{A}$ $=$ $\boldsymbol{B}^{-1}$.
泰勒公式在极限运算、无穷小代换等方面的解题过程中都有着重要的作用,但对泰勒公式的记忆有时候却很麻烦——在本文中,荒原之梦网为大家提供一种通过“逐步简化”的方法来记忆泰勒公式的步骤,以加强我们对于泰勒公式的掌握。
继续阅读“用逐步简化的方法记忆泰勒公式(泰勒定理)”那么,$\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $?$
则,$\boldsymbol{A A}^{*}$ $=$ $\boldsymbol{A}^{*} \boldsymbol{A}$ $=$ $?$
已知,有 $u(x, y)$ $=$ $u(\sqrt{x^{2} + y^{2}})$, $r$ $=$ $\sqrt{x^{2} + y^{2}}$ $>$ $0$.
并且已知函数 $u(x, y)$ 有二阶连续的偏导数,要求计算:
$\frac{\partial u}{\partial x}$、$\frac{\partial ^{2} u}{\partial x^{2}}$、$\frac{\partial u}{\partial y}$、$\frac{\partial ^{2} u}{\partial y^{2}}$.
继续阅读“一个复合函数求二阶偏导的例题:$u(x, y)$ $=$ $u(\sqrt{x^{2} + y^{2}})$”