题目
$$
\lim_{x \rightarrow + \infty} x^{2}[\arctan (x+1) – \arctan x] = ?
$$
$$
\int_{-1}^{0} \mathrm{~d} x \int_{-x}^{2-x^{2}} \left(1-xy \right) \mathrm{~d} y +\int_{0}^{1} \mathrm{~d} x \int_{x}^{2-x^{2}} \left(1-xy \right) \mathrm{~d} y = ?
$$
⟨A⟩. $\frac{5}{3}$
⟨B⟩. $\frac{5}{6}$
⟨C⟩. $\frac{7}{3}$
⟨D⟩. $\frac{7}{6}$
设 $M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^{2}}{1+x^{2}} \mathrm{~d} x$, $N$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{\mathrm{e}^{x}} \mathrm{~d} x$, $K$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\sqrt{\cos x}) \mathrm{~d} x$, 则( )
⟨A⟩. $M$ $>$ $N$ $>$ $K$
⟨C⟩. $K$ $>$ $M$ $>$ $N$
⟨B⟩. $M$ $>$ $K$ $>$ $N$
⟨D⟩. $K$ $>$ $N$ $>$ $M$
设函数 $f(x)$ 在 $[0, 1]$ 上二阶可导,且 $\int_{0}^{1} f(x) \mathrm{~d} x = 0$, 则 $?$
⟨A⟩. 当 $f^{\prime}(x)$ $<$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
⟨B⟩. 当 $f^{\prime \prime}(x)$ $<$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
⟨C⟩. 当 $f^{\prime}(x)$ $>$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
⟨D⟩. 当 $f^{\prime \prime}(x)$ $>$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
设函数 $f(x) = \left\{\begin{matrix} -1, x<0,\\ 1, x \geqslant 0, \end{matrix}\right.$ $g(x) = \left\{\begin{matrix} 2-ax,x \leqslant -1,\\ x, -1<x<0,\\ x-b, x \geqslant 0, \end{matrix}\right.$ 若 $f(x)+g(x)$ 在 $R$ 上连续,则 $?$
$$A. a=3,b=1$$
$$B. a=3,b=2$$
$$C. a=-3,b=1$$
$$D. a=-3,b=2$$
继续阅读“2018年考研数二第03题解析”下列函数中,在 $x = 0$ 处不可导的是 $?$.
$$A. f(x) = |x| \sin |x|$$
$$B. f(x) = |x| \sin \sqrt{|x|}$$
$$C. f(x) = \cos |x|$$
$$D. f(x) = \cos \sqrt{|x|}$$
继续阅读“2018年考研数二第02题解析”若 $\lim_{x \rightarrow 0} (e^{x} + ax^{2} + bx)^{\frac{1}{x^{2}}} = 1$, 则 $?$
$$A. a = \frac{1}{2}, b = -1$$
$$B. a = – \frac{1}{2}, b = -1$$
$$C. a = \frac{1}{2}, b = 1$$
$$D. a = – \frac{1}{2}, b = 1$$
继续阅读“2018年考研数二第01题解析”设函数 $f(x), g(x)$ 的二阶导函数在 $x=a$ 处连续,则 $\lim_{x \rightarrow a}$ $\frac{f(x) – g(x)}{(x-a)^{2}}$ $=$ $0$ 是两条曲线 $y$ $=$ $f(x)$, $y$ $=$ $g(x)$ 在 $x$ $=$ $a$ 对应点处相切及曲率相等的 $?$.
$\textcolor{Orange}{[A]}$ 充分不必要条件
$\textcolor{Orange}{[B]}$ 充分必要条件
$\textcolor{Orange}{[C]}$ 必要不充分条件
$\textcolor{Orange}{[D]}$ 既不充分又不必要条件
已知平面区域 $D$ $=$ $\{ (x, y) | |x| + |y|$ $\leqslant$ $\frac{\pi}{2} \}$, 记:
$I_{1}$ $=$ $\iint_{D}$ $\sqrt{x^{2} + y^{2}}$ $dxdy$, $I_{2}$ $=$ $\iint_{D}$ $\sin$ $\sqrt{x^{2}+y^{2}}$ $dxdy$, $I_{3}$ $=$ $\iint_{D}$ $(1-\cos \sqrt{x^{2}+y^{2}})$ $dxdy$, 则()
$\textcolor{Orange}{[A]}$ $I_{3} < I_{2} < I_{1}$
$\textcolor{Orange}{[B]}$ $I_{2} < I_{1} < I_{3}$
$\textcolor{Orange}{[C]}$ $I_{1} < I_{2} < I_{3}$
$\textcolor{Orange}{[D]}$ $I_{2} < I_{3} < I_{1}$
已知微分方程 $y^{”} + ay^{‘} + by = ce^{x}$ 的通解为 $y = (C_{1}+C_{2}x)e^{-x} +e^{x}$, 则 $a, b, c$ 依次为 $?$
$\textcolor{Orange}{[A]}$ $1, 0, 1$
$\textcolor{Orange}{[B]}$ $1, 0, 2$
$\textcolor{Orange}{[C]}$ $2, 1, 3$
$\textcolor{Orange}{[D]}$ $2, 1, 4$
下列反常积分发散的是:
A. $\int_{0}^{+\infty} xe^{-x}dx.$
B. $\int_{0}^{+\infty} xe^{-x^{2}}dx.$
C. $\int_{0}^{+\infty}\frac{arc \tan x}{1+x^{2}}dx.$
D. $\int_{0}^{+\infty}\frac{x}{1+x^{2}}dx.$
设函数 $f(u)$ 可导,$z$ $=$ $yf(\frac{y^{2}}{x})$, 则 $2x$ $\frac{\partial z}{\partial x}$ $+$ $y$ $\frac{\partial z}{\partial y}$ $=$ $?$
继续阅读“2019年考研数二第11题解析”曲线 $\left\{\begin{matrix} x = t – \sin t,\\ y = 1 – \cos t \end{matrix}\right.$ 在 $t = \frac{3 \pi}{2}$ 对应点处的切线在 $y$ 轴上的截距为 $?$.
继续阅读“2019年考研数二第10题解析”