2017 年研究生入学考试数学一选择题第 1 题解析

一、题目

若函数

$f(x)$ $=$ $\left\{\begin{matrix} \frac{1-\cos\sqrt{x}}{ax}, x > 0 \\ b, x\leqslant 0 \end{matrix}\right.$

在 $x$ $=$ $0$ 处连续,则()

( A ) $ab$ $=$ $\frac{1}{2}$

( B ) $ab$ $=$ $-$ $\frac{1}{2}$

( C ) $ab$ $=$ $0$

( D ) $ab$ $=$ $2$

二、解析

这道题可以根据函数连续的定义解出。

函数 $f(x)$ 在某一点 $x_{0}$ 处连续的定义如下:

$\lim_{x \rightarrow x_{0^{-}}}$ $=$ $\lim_{x \rightarrow x_{0^{+}}}$ $=$ $f(x_{0})$

因此,若函数 $f(x)$ 在 $x$ $=$ $0$ 处连续,则根据定义的话,我们需要证明:

$\lim_{x \rightarrow 0^{-}}$ $=$ $\lim_{x \rightarrow 0^{+}}$ $=$ $f(0)$

观察题目可知,这是一个分段函数,且当 $x$ $\in$ $(- \infty, 0]$ 时,$f(x)$ $=$ $b$. 于是,当 $x$ 从左边趋近于 $0$ 时,$f(0^{-})$ $=$ $b$.

当 $x$ 从右边趋近于 $0$ 时,适用的取值范围为 $x$ $>$ $0$, 而对应的函数值为:

$\lim_{x \rightarrow 0^{+}}$ $f(x)$ $=$ $\lim_{x \rightarrow 0^{+}}$ $\frac{1-\cos\sqrt{x}}{ax}$

根据如下的等价无穷小原则:

$1$ $-$ $\cos x$ $\sim$ $\frac{1}{2}x^{2}$

于是有:

原式 $=$ $\lim_{x \rightarrow 0^{+}}$ $\frac{\frac{1}{2}(\sqrt{x})^{2}}{ax}$ $=$ $\frac{1}{2a}$

为了满足上面提到的函数在一点处连续的定义,需要有:

$\frac{1}{2a}$ $=$ $b$

化简形式得:

$ab$ $=$ $\frac{1}{2}$

由此可知,选 $A$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress