一、前言 
对函数的自变量加上、减去、乘以、除以一个数字可以对函数图像产生影响,在本文中,「荒原之梦考研数学」将通过图示和口诀的方式让同学们能够直观地理解这种影响,进而在学习和解题的过程中加以应用。
继续阅读“加减乘除运算对函数图象形状的影响”对函数的自变量加上、减去、乘以、除以一个数字可以对函数图像产生影响,在本文中,「荒原之梦考研数学」将通过图示和口诀的方式让同学们能够直观地理解这种影响,进而在学习和解题的过程中加以应用。
继续阅读“加减乘除运算对函数图象形状的影响”在本文中,「荒原之梦考研数学」将为同学们详细讲解考研高等数学以及概率论和数理统计课程中常用的伽马函数。
继续阅读“伽马函数(欧拉第二积分/Gamma Function)详解”我们知道,如果函数 $f(x)$ 在点 $x_{0}$ 的某个邻域内有定义(不需要一定在该邻域内可导),且函数 $f(x)$ 在点 $x_{0}$ 处可导,则:
$$
\begin{aligned}
f ^{\prime} (x_{0}) \\ \\
& = \lim_{x \to x_{0}} \frac{f(x) – f(x_{0})}{x – x_{0}} \\ \\
& = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x) – f(x_{0})}{\Delta x}
\end{aligned}
$$
上面的公式也被称作函数在一点处导数的定义式。
但事实上,上面式子中的等号严格的来说是不成立的,且在有些时候,我们不能直接使用上面的式子完成解题。
所以,在本文中,「荒原之梦考研数学」就借助极限与无穷小的关系,对上面的式子进行完善,以形成一个比较完备的一点处导数的定义式。
继续阅读“借助极限与无穷小的关系,对一点处导数的定义式进行完善”我们知道,一般情况下,积分会导致函数的奇偶性发生改变。例如,在下面的式子中,一般情况下,如果函数 $f(x)$ 是奇函数,则 $F(x)$ 就是偶函数;如果函数 $f(x)$ 是偶函数,则 $F(x)$ 就是奇函数:
$$
F(x) = \int_{0}^{x} f(t) \mathrm{~d} t
$$
但是,如果我们要分析的是下面这个式子,则函数 $f(x)$ 的奇偶性会对函数 $F(x)$ 的奇偶性产生什么样的影响呢?
$$
F(x) = \int_{0}^{x} g(x) \cdot f(t) \mathrm{~d} t
$$
在本文中,「荒原之梦考研数学」将通过详细的计算,给同学们讲明白这个问题。
继续阅读“关于积分对函数奇偶性影响的一个扩展公式”在本文中,「荒原之梦考研数学」将借助几何中“两点之间确定一条直线”的思想,帮助同学们理解什么时候可以使用特例法求解题目答案。
继续阅读““两点确定一条直线”的思想在特例法中的应用”下面这个恒等式是考研数学中和高等数学中一个很重要的恒等式:
$$
\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}
$$
在本文中,荒原之梦考研数学将给同学们证明上面这个式子。
继续阅读“基于函数证明有关 $\arctan$ 的一个三角恒等式”三角函数的二倍角公式($\sin 2x$, $\cos 2x$, $\tan 2x$, $\cot 2x$)很常用,三角函数的三倍角公式在求解一些题目的时候,也是一个非常有用的工具。在本文中,「荒原之梦考研数学」将给同学们整理出一份常用的三角函数三倍角公式。
继续阅读“三角函数的三倍角公式”在考研数学的线性代数科目中,我们有时候会遇到要使用下面这个公式的题目:
$$
\mathbf{r} (\boldsymbol{A}) + \mathbf{r} (\boldsymbol{E} – \boldsymbol{A}) \geqslant \mathbf{r} (\boldsymbol{E})
$$
事实上,往年的考研数学真题中也曾出现过要用该性质的题目。但是,同学们在使用这个性质的时候,可能会对上面这个不等式为什么成立产生疑问,在文本中,「荒原之梦考研数学」就给出一种简单的证明方式,帮助同学们解除疑惑。
继续阅读“关于 $\mathbf{r} (\boldsymbol{A})$ $+$ $\mathbf{r} (\boldsymbol{E}$ $-$ $\boldsymbol{A})$ $\geqslant$ $\mathbf{r} (\boldsymbol{E})$ 的一个简单证明”求下面函数的 $n$ 阶导数:
$$
\begin{aligned}
y_{1} & = \sin x \\
y_{2} & = \cos x \\
y_{3} & = \frac{1}{x + 1} \\
y_{4} & = \frac{-1}{x}
\end{aligned}
$$
难度评级:
继续阅读“用归纳法求函数的 $n$ 阶导数(附 $\sin$ 与 $\cos$ 的 $n$ 阶导公式)”已知 $f(x,y,z)$ $=$ $\left( \frac{x}{y} \right)^{\frac{1}{z}}$, 则:
$$
\mathrm{d} f(1,1,1) = ?
$$
难度评级:
继续阅读“三元函数全微分的计算:比二元多一元”已知函数 $u$ $=$ $f \left( x + y , x y , \frac { x } { y } \right)$, 求 $\frac{\partial^{2} u}{\partial x^{2} }$, $\frac { \partial^{2} u }{ \partial x \partial y }$, $\frac{ \partial^{2} u }{\partial y^{2}}$.
其中,$f$ 具有二阶连续偏导数。
难度评级:
继续阅读“二阶偏导数求导对比:两个变量的三元函数和三个变量的二元函数”$$
\begin{aligned}
I_{1} = & \ \lim_{x \to \infty} \left( \frac{x+2}{x + 1} \right)^{2x + \textcolor{orangered}{2}} = ? \\ \\
I_{2} = & \ \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{2x + \textcolor{orangered}{1}} = ?
\end{aligned}
$$
难度评级:
继续阅读“在无穷大条件下,幂指函数的“幂”增减一个常数不会影响最终的结果”