一、题目
已知 $f(x,y,z)$ $=$ $\left( \frac{x}{y} \right)^{\frac{1}{z}}$, 则:
$$
\mathrm{d} f(1,1,1) = ?
$$
难度评级:
继续阅读“三元函数全微分的计算:比二元多一元”已知 $f(x,y,z)$ $=$ $\left( \frac{x}{y} \right)^{\frac{1}{z}}$, 则:
$$
\mathrm{d} f(1,1,1) = ?
$$
难度评级:
继续阅读“三元函数全微分的计算:比二元多一元”已知函数 $u$ $=$ $f \left( x + y , x y , \frac { x } { y } \right)$, 求 $\frac{\partial^{2} u}{\partial x^{2} }$, $\frac { \partial^{2} u }{ \partial x \partial y }$, $\frac{ \partial^{2} u }{\partial y^{2}}$.
其中,$f$ 具有二阶连续偏导数。
难度评级:
继续阅读“二阶偏导数求导对比:两个变量的三元函数和三个变量的二元函数”$$
\begin{aligned}
I_{1} = & \ \lim_{x \to \infty} \left( \frac{x+2}{x + 1} \right)^{2x + \textcolor{orangered}{2}} = ? \\ \\
I_{2} = & \ \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{2x + \textcolor{orangered}{1}} = ?
\end{aligned}
$$
难度评级:
继续阅读“在无穷大条件下,幂指函数的“幂”增减一个常数不会影响最终的结果”$$
I = \int \frac{1}{x \ln x \ln \ln x} \mathrm{~d} x = ?
$$
难度评级:
继续阅读“拨开云雾,直抵核心:不要被这个积分中的三个 “$\ln$” 函数迷惑了”请证明下面的定积分的性质:
$$
\begin{aligned}
\int_{a}^{b} 1 \mathrm{~d} x = & \ b – a \\
\int_{a}^{b} k f(x) \mathrm{~d} x = & \ k \int_{a}^{b} f(x) \mathrm{~d} x
\end{aligned}
$$
难度评级:
继续阅读“用定积分的定义证明两个定积分的常用性质”定积分的定义是考研数学中经常考察的一个内容。但是,在真正的考试题中,我们能遇到的要使用定积分的定义求解的题目,一般是不能用一般的积分公式计算的,这样的题目不利于我们从更多的角度把握用定积分的定义解题这一方法的全貌。
所以,在本文中,「荒原之梦考研数学」将利用定积分的定义,给同学们演示对下面这两个比较简单的定积分进行求解的过程:
$$
\begin{aligned}
I_{1} = & \int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x \\ \\
I_{2} = & \int_{1}^{2} \frac{1}{x} \mathrm{~d} x
\end{aligned}
$$
难度评级:
继续阅读“利用定积分的定义计算两个简单的定积分”求和符号是我们在考研数学中很常见到的一个符号,常见的求和符号写法如下:
$$
\sum_{i=1}^{n=16}
$$
或者:
$$
\lim_{n \to \infty} \sum_{i=1}^{n}
$$
那么,我们应该怎么理解上面这个求和符号呢?以及该怎么让求和符合参与到具体的计算中呢?
在本文中,「荒原之梦考研数学」就给同学们讲解一下这个问题。
继续阅读“求和符号中的 $i$ 和 $n$ 有啥区别?”在考研数学中,用定积分的定义求解某些定积分或者数列的值,是一种很常见的考题。
假如我们要用定积分的定义求解区间 $[a, b]$ 上的积分值,我们应该以什么样的方式划分 $[a, b]$ 这个区间呢?
在本文中,「荒原之梦考研数学」就给同学们讲一讲上面这个问题。
继续阅读“用定积分的定义求解时怎么进行积分区间的分割?”我们知道,在题目的计算过程中,如果式子是分式,就有可能不利于我们进行计算。所以,为了简化计算,我们一般更倾向于简化分式中的分母,从而使该分式更接近于一般的式子,例如简化分母的次幂或者降低分母的复杂度。
在本文中,「荒原之梦考研数学」将给大家带来对于含有对数函数的分式的一种“去分母”解法。
继续阅读“含有对数函数的分式怎么计算”$$
I = \lim_{n \to \infty} \sum_{n = 1}^{n} \mathrm{e}^{\frac{i}{n}} = ?
$$
难度评级:
继续阅读“级数 $\lim_{n \to \infty}$ $\sum_{n = 1}^{n}$ $\mathrm{e}^{\frac{i}{n}}$ 求和怎么计算?”已知 $f(x)$ 的一个原函数为 $\frac{\cos x}{x}$, 则:
$$
I = \int x f ^{\prime} (x) \mathrm{~d} x
$$
难度评级:
继续阅读“遇到比较绕的题目,最好的办法就是先将其翻译成纯粹的数学语言”在高等数学(考研数学)中,我们为了判断某些题目,可能需要举一些反例,而在本文中,「荒原之梦考研数学」就给同学们带来三种比较特殊的函数,这些函数也是我们在寻找反例的时候,很容易用上的工具。
继续阅读“考研数学中需要注意的三种特殊的函数”已知 $x_{1}$, $x_{2}$, $\cdots$, $x_{n}$ 为 $n$ 个非负实数,则其几何平均值 $\sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}}$ 一定小于或等于其算术平均值 $\frac{x_{1} + x_{2} + \cdots + x_{n}}{n}$, 即:
$$
\begin{aligned}
& \sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}} \leqslant \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} \\ \\
\Rightarrow & \textcolor{springgreen}{ \ \sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leqslant \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} }
\end{aligned}
$$
在本文中,「荒原之梦考研数学」将使用数学归纳法和递推法两种方法为同学们证明上述不等式。
继续阅读“平均值不等式的详细证明过程”在本文中,「荒原之梦考研数学」将通过数字在乘法和减法中“牵制”能力的区别,简易地证明下式(数字的平均值相乘大于或等于每个数字相乘):
$$
\textcolor{yellow}{
\left( \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} \right)^{n} \geqslant x_{1} \times x_{2} \times \cdots \times x_{n}
}
$$
继续阅读“证明:数字的平均值相乘一定不小于每个数字相乘——小数字在乘法中对大数字的“牵制”程度比减法中严重”为了更便于理解,同学们可以将本文中的“牵制”理解为“拖累”——小数字对大数字的“拖累”效果在乘法中比在减法中变现更突出。