问题
已知,$M_{i j}$ 是行列式中元素 $a_{i j}$ 的余子式,则,该元素的代数余子式 $ A_{i j}$ $=$ $?$选项
[A]. $A_{i j}$ $=$ $(-1)^{i+j+1}$ $M_{i j}$[B]. $A_{i j}$ $=$ $- M_{i j}$
[C]. $A_{i j}$ $=$ $(-1)^{i-j}$ $M_{i j}$
[D]. $A_{i j}$ $=$ $(-1)^{i+j}$ $M_{i j}$
则,在上述行列式,元素 $e$ 对应的余子式是什么?
$\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$.
则,根据行列式的性质,可以对上面的行列式做什么样的转换?
$\left|\begin{array}{lll} \textcolor{Red}{a_{11}} \textcolor{yellow}{+} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} \textcolor{yellow}{+} \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} \textcolor{yellow}{+} \textcolor{cyan}{b_{31}} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \textcolor{Red}{a_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $\textcolor{yellow}{+}$ $\left|\begin{array}{lll} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{cyan}{b_{31}} & a_{32} & a_{33}\end{array}\right|$
$\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ \textcolor{red}{k} a_{i 1} & \textcolor{red}{k} a_{i 2} & \cdots & \textcolor{red}{k} a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\textcolor{red}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$
已知 $a$ 是常数,且矩阵 $A = \begin{bmatrix}
1 & 2 & a\\
1 & 3 & 0\\
2 & 7 & -a
\end{bmatrix}$ 可经初等列变换化为矩阵 $B = \begin{bmatrix}
1 & a & 2\\
0 & 1 & 1\\
-1 & 1 & 1
\end{bmatrix}$.
$(Ⅰ)$ 求 $a$;
$(Ⅱ)$ 求满足 $AP = B$ 的可逆矩阵 $P$.
继续阅读“2018年考研数二第23题解析:矩阵的秩、非齐次线性方程组、可逆矩阵”设实二次型 $f(x_{1}, x_{2}, x_{3}) =$ $(x_{1} – x_{2} + x_{3})^{2} +$ $(x_{2} + x_{3})^{2} +$ $(x_{1} + a x_{3})^{2}$, 其中 $a$ 是参数.
$(Ⅰ)$ 求 $f(x_{1}, x_{2}, x_{3}) = 0$ 的解;
$(Ⅱ)$ 求 $f(x_{1}, x_{2}, x_{3})$ 的规范型.
继续阅读“2018年考研数二第22题解析:二次型、齐次线性方程组、二次型的规范型”设二次型 $f(x_{1}, x_{2}, x_{3}) =$ $2x_{1}^{2} -$ $x_{2}^{2} +$ $ax_{3}^{2} +$ $2x_{1}x_{2} -$ $8x_{1}x_{3} +$ $2x_{2}x_{3}$ 在正交变换 $x = Qy$ 下的标准型为 $\lambda_{1}y_{1}^{2} +$ $\lambda_{2} y_{2}^{2}$, 求 $a$ 的值及一个正交矩阵 $Q$.
继续阅读“2017年考研数二第23题解析:二次型、标准型、特征值与特征向量”设 $3$ 阶矩阵 $A = (\alpha_{1}, \alpha_{2}, \alpha_{3})$ 有 $3$ 个不同的特征值,且 $\alpha_{3} = \alpha_{1} + 2 \alpha_{2}$.
$(Ⅰ)$ 证明 $r(A) = 2$;
$(Ⅱ)$ 若 $\beta = \alpha_{1} + \alpha_{2} + \alpha_{3}$, 求方程组 $Ax = \beta$ 的通解.
继续阅读“2017年考研数二第22题解析:特征值、基础解系、非齐次线性方程组”编号:A2016223
已知矩阵 $A = \begin{bmatrix}
0 & -1 & 1\\
2 & -3 & 0\\
0 & 0 & 0
\end{bmatrix}$.
$(Ⅰ)$ 求 $A^{99}$;
$(Ⅱ)$ 设 $3$ 阶矩阵 $B=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ 满足 $B^{2} = BA$. 记 $B^{100} = (\beta_{1}, \beta_{2}, \beta_{3})$, 将 $\beta_{1}$, $\beta_{2}$, $\beta_{3}$ 分别表示为 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 的线性组合.
继续阅读“2016年考研数二第23题解析:相似对角化、特征值、特征向量、线性表示”