代数余子式的定义(C002)

问题

已知,$M_{i j}$ 是行列式中元素 $a_{i j}$ 的余子式,则,该元素的代数余子式 $ A_{i j}$ $=$ $?$

选项

[A].   $A_{i j}$ $=$ $(-1)^{i+j+1}$ $M_{i j}$

[B].   $A_{i j}$ $=$ $- M_{i j}$

[C].   $A_{i j}$ $=$ $(-1)^{i-j}$ $M_{i j}$

[D].   $A_{i j}$ $=$ $(-1)^{i+j}$ $M_{i j}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$A_{i j}$ $=$ $(-1)^{i+j}$ $M_{i j}$

余子式的定义(C002)

问题

已知,有如下行列式:
$\begin{vmatrix} a & b & c\\ d & \textcolor{Red}{e} & f\\ g & h & i \end{vmatrix}$.

则,在上述行列式,元素 $e$ 对应的余子式是什么?

选项

[A].   $\begin{bmatrix} b & c\\ h & i \end{bmatrix}$

[B].   $\begin{bmatrix} a & b\\ g & h \end{bmatrix}$

[C].   $\begin{bmatrix} a & c\\ g & i \end{bmatrix}$

[D].   $\begin{bmatrix} e & f\\ h & i \end{bmatrix}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\begin{vmatrix} a & b & c\\ d & \textcolor{Red}{e} & f\\ g & h & i \end{vmatrix}$ 的余子式:

$\begin{bmatrix} a & c\\ g & i \end{bmatrix}$

说明:
在 $n$ 阶行列式中,划去元素 $a_{i j}$ 所在的第 $i$ 行和第 $j$ 列,剩下的元素按照原来的位置组成的 $n$ $-$ $1$ 阶行列式,称为 $a_{i j}$ 的余子式,记作 $M_{i j}$.

把行列式某行或某列的 $k$ 倍加至另一行或列时的性质(C001)

问题

如果,把一个行列式的某行或某列的 $k$ 倍加至该行列式的另一行或另一列,则该行列式会表现出来怎样的性质?

选项

[A].   当 $k$ $<$ $0$ 时行列式变号,当 $k$ $>$ $0$ 时行列式不变号

[B].   行列式变号

[C].   行列式的值不变

[D].   当 $k$ $>$ $0$ 时行列式变号,当 $k$ $<$ $0$ 时行列式不变号


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

行列式的值不变

行列式中某两行或两列元素成比例时的性质(C001)

问题

当行列式中某两行或两列元素成比例时,该行列式会表现出来怎样的性质?

选项

[A].   该行列式等于 $0$

[B].   该行列式不等于 $1$

[C].   该行列式不等于 $0$

[D].   该行列式等于 $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

该行列式等于 $0$

行列式中某两行或两列元素相同时的性质(C001)

问题

当行列式中某两行或两列元素相同时,该行列式会表现出来怎样的性质?

选项

[A].   该行列式等于 $1$

[B].   该行列式等于 $0$

[C].   该行列式不等于 $1$

[D].   该行列式不等于 $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

该行列式等于 $0$

行列式中某一行或列元素全为零时的性质(C001)

问题

当行列式中某一行或者某一列的元素全为 $0$ 的时,该行列式会表现出来怎样的性质?

选项

[A].   该行列式不等于 $1$

[B].   该行列式不等于 $0$

[C].   该行列式等于 $1$

[D].   该行列式等于 $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

该行列式等于 $0$

行列式的可拆分性(C001)

问题

如果,行列式中某一行或者某一列的元素可以写成两数之和的形式,如:

$\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$.

则,根据行列式的性质,可以对上面的行列式做什么样的转换?

选项

[A].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $+$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[B].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \frac{1}{a_{11}} & a_{12} & a_{13} \\ \frac{1}{a_{21}} & a_{22} & a_{23} \\ \frac{1}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $+$ $\left|\begin{array}{lll} \frac{1}{b_{11}} & a_{12} & a_{13} \\ \frac{1}{b_{21}} & a_{22} & a_{23} \\ \frac{1}{b_{31}} & a_{32} & a_{33}\end{array}\right|$

[C].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $\times$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[D].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $-$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left|\begin{array}{lll} \textcolor{Red}{a_{11}} \textcolor{yellow}{+} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} \textcolor{yellow}{+} \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} \textcolor{yellow}{+} \textcolor{cyan}{b_{31}} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \textcolor{Red}{a_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $\textcolor{yellow}{+}$ $\left|\begin{array}{lll} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{cyan}{b_{31}} & a_{32} & a_{33}\end{array}\right|$

常数公因子 $k$ 在行列式中的处理方式(C001)

问题

若行列式的某行或列有公因子 $k$, 则以下对该公因子的处理方式中,正确的是哪个?

选项

[A].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $k$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[B].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $-k$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[C].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $k^{n}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[D].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\frac{1}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ \textcolor{red}{k} a_{i 1} & \textcolor{red}{k} a_{i 2} & \cdots & \textcolor{red}{k} a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\textcolor{red}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

2018年考研数二第23题解析:矩阵的秩、非齐次线性方程组、可逆矩阵

题目

已知 $a$ 是常数,且矩阵 $A = \begin{bmatrix}
1 & 2 & a\\
1 & 3 & 0\\
2 & 7 & -a
\end{bmatrix}$ 可经初等列变换化为矩阵 $B = \begin{bmatrix}
1 & a & 2\\
0 & 1 & 1\\
-1 & 1 & 1
\end{bmatrix}$.

$(Ⅰ)$ 求 $a$;

$(Ⅱ)$ 求满足 $AP = B$ 的可逆矩阵 $P$.

继续阅读“2018年考研数二第23题解析:矩阵的秩、非齐次线性方程组、可逆矩阵”

2018年考研数二第22题解析:二次型、齐次线性方程组、二次型的规范型

题目

设实二次型 $f(x_{1}, x_{2}, x_{3}) =$ $(x_{1} – x_{2} + x_{3})^{2} +$ $(x_{2} + x_{3})^{2} +$ $(x_{1} + a x_{3})^{2}$, 其中 $a$ 是参数.

$(Ⅰ)$ 求 $f(x_{1}, x_{2}, x_{3}) = 0$ 的解;

$(Ⅱ)$ 求 $f(x_{1}, x_{2}, x_{3})$ 的规范型.

继续阅读“2018年考研数二第22题解析:二次型、齐次线性方程组、二次型的规范型”

2017年考研数二第23题解析:二次型、标准型、特征值与特征向量

题目

设二次型 $f(x_{1}, x_{2}, x_{3}) =$ $2x_{1}^{2} -$ $x_{2}^{2} +$ $ax_{3}^{2} +$ $2x_{1}x_{2} -$ $8x_{1}x_{3} +$ $2x_{2}x_{3}$ 在正交变换 $x = Qy$ 下的标准型为 $\lambda_{1}y_{1}^{2} +$ $\lambda_{2} y_{2}^{2}$, 求 $a$ 的值及一个正交矩阵 $Q$.

继续阅读“2017年考研数二第23题解析:二次型、标准型、特征值与特征向量”

2017年考研数二第22题解析:特征值、基础解系、非齐次线性方程组

题目

设 $3$ 阶矩阵 $A = (\alpha_{1}, \alpha_{2}, \alpha_{3})$ 有 $3$ 个不同的特征值,且 $\alpha_{3} = \alpha_{1} + 2 \alpha_{2}$.

$(Ⅰ)$ 证明 $r(A) = 2$;

$(Ⅱ)$ 若 $\beta = \alpha_{1} + \alpha_{2} + \alpha_{3}$, 求方程组 $Ax = \beta$ 的通解.

继续阅读“2017年考研数二第22题解析:特征值、基础解系、非齐次线性方程组”

2016年考研数二第23题解析:相似对角化、特征值、特征向量、线性表示

题目

编号:A2016223

已知矩阵 $A = \begin{bmatrix}
0 & -1 & 1\\
2 & -3 & 0\\
0 & 0 & 0
\end{bmatrix}$.

$(Ⅰ)$ 求 $A^{99}$;

$(Ⅱ)$ 设 $3$ 阶矩阵 $B=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ 满足 $B^{2} = BA$. 记 $B^{100} = (\beta_{1}, \beta_{2}, \beta_{3})$, 将 $\beta_{1}$, $\beta_{2}$, $\beta_{3}$ 分别表示为 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 的线性组合.

继续阅读“2016年考研数二第23题解析:相似对角化、特征值、特征向量、线性表示”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress