2015 年研究生入学考试数学一填空题第 2 题解析

一、题目

$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $(\frac{\sin x}{1+\cos x}$ $+$ $|x|)$ $dx$ $=$__.

二、解析

本题存在(关于原点对称的)对称区间 “$[-\frac{\pi}{2}$, $\frac{\pi}{2}]$”, 在求积分的时候,如果看到这样的对称区间,则要考虑被积函数是不是奇函数或者偶函数。如果是奇函数,则其在对称区间上的积分为 $0$, 如果是偶函数,则我们可以只计算其大于 $0$ 或者小于 $0$ 方向上的积分,之后再乘以 $2$ 即可获得整个积分区间上的积分数值。

由于:

$\frac{\sin (-x)}{1+\cos(-x)}$ $=$ $\frac{-\sin x}{1+\cos x}$ $\Rightarrow$ $f(-x)$ $=$ $-f(x)$.

因此,$f(x)$ $=$ $\frac{\sin x}{1+\cos x}$ 是一个奇函数,因此,其在对称区间 $[-\frac{\pi}{2}$, $\frac{\pi}{2}]$ 上的积分为 $0$.

又由于:

$|-x|$ $=$ $|x|$ $\Rightarrow$ $g(-x)$ $=$ $g(x)$.

因此,$g(x)$ $=$ $|x|$ 是一个偶函数。

于是:

原式 $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $|x|$ $dx$ $=$ $2$ $\int_{0}^{\frac{\pi}{2}}$ $x$ $dx$ $=$ $2$ $\cdot$ $\frac{1}{2}x^{2}|_{0}^{\frac{\pi}{2}}$ $=$ $\frac{\pi^{2}}{4}$.

当然,本题除了可以使用积分的原理计算之外,还可以画图计算面积,如图 1:

2015 年研究生入学考试数学一填空题第 2 题解析 | 荒原之梦
图 01. y=|x| 的函数图像

根据上图,我们有:

$\frac{\pi}{2}$ $\cdot$ $\frac{\pi}{2}$ $\cdot$ $\frac{1}{2}$ $\cdot$ $2$ $=$ $\frac{\pi^{2}}{4}$.

综上可知,本题的正确答案是:$\frac{\pi^{2}}{4}$.

EOF

2018 年研究生入学考试数学一填空题第 1 题解析

一、题目

$\lim_{x \rightarrow 0}$ $(\frac{1-\tan x}{1+\tan x})^{\frac{1}{\sin kx}}$ $=$ $e$, 则 $k$ $=$__.

二、解析

观察本题可以发现,这是一个求极限的式子,而且等式的右边是 $e$, 符合“两个重要极限”中的第二个重要极限的一部分特征。

两个重要极限如下:

$\lim_{x \rightarrow x_{x_{0}}}$ $\frac{\sin x}{x}$ $=$ $1$, $\lim_{x \rightarrow 0}$ $(1+x)^{\frac{1}{x}}$ $=$ $\lim_{x \rightarrow \infty}$ $(1+\frac{1}{x})^{x}$ $=$ $e$.

由于题目中的式子不存在上述公式中的 $1$, 因此,我们需要构造出这个 $1$, 即:

$1$ $+$ $\square$ $=$ $\frac{1-\tan x}{1+\tan x }$ $\Rightarrow$ $\square$ $=$ $\frac{1-\tan x}{1+\tan x}$ $-$ $1$ $=$ $\frac{1-\tan x}{1+\tan x}$ $-$ $\frac{1+\tan x}{1+\tan x}$ $=$ $\frac{-2 \tan x}{1+\tan x}$.

于是,原式 $=$ $\lim_{x \rightarrow 0}$ $(1+\frac{-2\tan x}{1+\tan x})^{\frac{1}{\sin kx}}$ $=$ $e$. (1)

由于当 $x$ $\rightarrow$ $0$ 时,$\frac{-2\tan x}{1+\tan x}$ $\rightarrow$ $0$ 且 $\frac{1}{\sin kx}$ $\rightarrow$ $\infty$, 所以,符合使用“两个重要极限”的条件,可以继续接下来的计算。

2018 年研究生入学考试数学一填空题第 1 题解析 | 荒原之梦
图 01. 正切函数图像.

接下来继续向公式的方向构造等式。

$(1)$ $=$ $\lim_{x \rightarrow 0}$ $(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x} \frac{-2\tan x}{1+\tan x} \frac{1}{\sin kx}}$. (2)

根据公式,我们知道:

$\lim_{x \rightarrow 0}$ $(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x}}$ $=$ $e$.

于是:

$(2)$ $=$ $e^{\lim_{x \rightarrow 0} \frac{-2\tan x}{1+\tan x}\frac{1}{\sin kx}}$ $=$ $e^{\lim_{x \rightarrow 0} \frac{-2\tan x}{(1+\tan x)\sin kx}}$. (3)

当 $x$ $\rightarrow$ $0$ 时,$\tan x$ $\rightarrow$ $0$ 是不可以带入原式中的(只有非零和非无穷的数值可以带入原式中。),不过当 $x$ $\rightarrow$ $0$ 时,$(1+\tan x)$ $\rightarrow$ $1$ 是可以带入原式中的,于是:

$\lim_{x \rightarrow 0}$ $\frac{-2\tan x}{(1+\tan x)\sin kx}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{-2\tan x}{\sin kx}$.

又因为当 $x$ $\rightarrow$ $0$ 时,$\sin x$ $\sim$ $\tan x$ $\sim x$, 于是:

$\lim_{x \rightarrow 0}$ $\frac{-2\tan x}{\sin kx}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{-2x}{kx}$ $=$ $-\frac{2}{k}$.

即:

$e^{-\frac{2}{k}}$ $=$ $e$ $\Rightarrow$ $-$ $\frac{2}{k}$ $=$ $1$ $\Rightarrow$ $k$ $=$ $-$ $2$.

综上可知,正确答案是:$-2$.

EOF

2015 年研究生入学考试数学一解答题第 1 题解析

一、题目

设函数 $f(x)$ $=$ $x$ $+$ $a$ $\ln(1+x)$ $+$ $bx$ $\sin x$, $g(x)$ $=$ $k$ $x^{3}$ 在 $x$ $\rightarrow$ $0$ 时等价无穷小,求常数 $a$, $b$, $k$ 的取值.

二、解析

由于 $x$ $\rightarrow$ $0$ 时,$f(x)$ 和 $g(x)$ 是等价无穷小,因此有:

$\lim_{x \rightarrow 0}$ $\frac{f(x)}{g(x)}$ $=$ $1$, 即:

$\lim_{x \rightarrow 0}$ $\frac{x+a \ln(1+x) + bx \sin x}{kx^{3}}$ $=$ $1$.

又由麦克劳林公式:

1. $\sin x$ $=$ $x$ $+$ $o(x^{2})$;

注 1:
根据麦克劳林公式,$\sin x$ 也可以等于 $x$ $-$ $\frac{x^{3}}{6}$ $+$ $o(x^{4})$, 但是这里为了能够在接下来的计算中使得分子分母可以使用“对照”的方式求解,分子的最大幂次不能大于分母的最大幂次。由于 $\sin x$ 在使用麦克劳林公式替换之后还需要和 $x$ 相乘得到二次幂,因此这里只能令 $\sin x$ 等于 $x$ $+$ $o(x^{2})$.

2. $\ln(1+x)$ $=$ $x$ $-$ $\frac{x^{2}}{2}+\frac{x^{3}}{3}$ $+$ $o(x^{3})$.

注 2:
对 $\ln(1+x)$ 项数的选取所依据的原因和注 $1$ 一致。

于是,我们有:

$1$ $=$ $\lim_{x \rightarrow 0}$ $\frac{x+ax-\frac{a}{2}x^{2}+\frac{a}{3}x^{3}+o(x^{3})+bx^{2}+o(x^{3})}{kx^{3}}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{(1+a)x+(b-\frac{a}{2})x^{2}+\frac{a}{3}x^{3}+o(x^{3})}{kx^{3}}$.

于是,我们有:

$\left\{\begin{matrix} 1+a=0,\\ b-\frac{a}{2}=0,\\ \frac{a}{3}=k. \end{matrix}\right.$

解得:

$\left\{\begin{matrix} a=-1,\\ b=-\frac{1}{2},\\ k=-\frac{1}{3}. \end{matrix}\right.$

三、手写作答

2015 年研究生入学考试数学一解答题第 1 题解析 | 荒原之梦
图 1

EOF

2017 年研究生入学考试数学一填空题第 2 题解析

一、题目

微分方程 $y”$ $+$ $2y’$ $+$ $3y$ $=$ $0$ 的通解为__.

二、解析

观察可知,这是一个二阶常系数线性齐次微分方程。

二阶常系数线性齐次微分方程的性质如下:

形如 $y”$ $+$ $py’$ $+$ $qy$ $=$ $0$, 其中 $p$, $q$ 均为常数。

特征方程为:$\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$,

(1) 当 $\lambda_{1}$, $\lambda_{2}$ 为互异实根时,微分方程得通解为 $y(x)$ $=$ $C_{1}$ $e^{\lambda_{1}x}$ $+$ $C_{2}$ $e^{\lambda_{2}x}$;

(2) 当 $\lambda_{1}$ $=$ $\lambda_{2}$ 时,通解为 $y(x)$ $=$ $(C_{1}+C_{2}x)$ $e^{\lambda_{1}x}$;

(3) 当 $\lambda$ $=$ $\alpha$ $\pm$ $i$ $\beta$ (复数根)时,通解为 $y(x)$ $=$ $e^{\alpha x}$ $(C_{1}$ $\cos \beta$ $x$ $+$ $C_{2}$ $\sin \beta$ $x)$.

在本题中,特征方程中的 $p$ $=$ $2$, $q$ $=$ $3$, 因此特征方程为:

$\lambda^{2}$ $+$ $2$ $\lambda$ $+$ $3$ $=$ $0$. (1)

此外,我们还知道,对于形如 $a$ $x^{2}$ $+$ $bx$ $+$ $c$ $=0$ 的一元二次方程,其求根公式为:

$x$ $=$ $\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$.

于是,我们知道,对于 (1) 式:

$\lambda$ $=$ $\frac{-2\pm\sqrt{4-12}}{2}$ $=$ $\frac{-2\pm\sqrt{-8}}{2}$. (2)

我们又知道,在虚数中(复数包含虚数和实数),虚数单位 $i$ 有如下性质:

$i^{2}$ $=$ $-1$.

于是,(2) 式可以写成:

$\lambda$ $=$ $\frac{-2\pm\sqrt{8i^{2}}}{2}$ $=$ $\frac{-2\pm i 2 \sqrt{2}}{2}$ $=$ $-1$ $\pm$ $i$ $\sqrt{2}$.

于是,$\alpha$ $=$ $-1$, $\beta$ $=$ $\sqrt{2}$.

因此,正确答案是:

$y$ $=$ $e^{-x}$ $(C_{1}$ $\cos \sqrt{2}x$ $+$ $C_{2}$ $\sin \sqrt{2}$ $x$ $)$

EOF

2008 年研究生入学考试数学一填空题第 1 题解析

一、题目

微分方程 $xy’$ $+$ $y$ $=0$ 满足条件 $y(1)$ $=$ $1$ 的解是 $y$ $=$__.

二、解析

由 $xy’$ $+$ $y$ $=0$ 得:

$(xy)’$ $=0$.

即:

$xy$ $=$ $C$ $\Rightarrow$ $y$ $=$ $\frac{C}{x}$

又因为 $y(1)$ $=$ $1$ $\Rightarrow$ $1$ $=$ $\frac{C}{1}$ $\Rightarrow$ $C$ $=$ $1$ $\Rightarrow$ $y$ $=$ $\frac{1}{x}$.

综上可知,正确答案是:$\frac{1}{x}$.

EOF

2009 年研究生入学考试数学一选择题第 4 题解析 (两种解法)

一、题目

设有两个数列 ${a_{n}}$, ${b_{n}}$, 若 $\lim_{n \rightarrow \infty}$ $a_{n}$ $=0$, 则()

( A ) 当 $\sum_{n=1}^{\infty}$ $b_{n}$ 收敛时,$\sum_{n=1}^{\infty}$ $a_{n}$ $b_{n}$ 收敛.

( B ) 当 $\sum_{n=1}^{\infty}$ $b_{n}$ 发散时,$\sum_{n=1}^{\infty}$ $a_{n}$ $b_{n}$ 发散.

( C ) 当 $\sum_{n=1}^{\infty}$ $|b_{n}|$ 收敛时,$\sum_{n=1}^{\infty}$ $a_{n}^{2}$ $b_{n}^{2}$ 收敛.

( D ) 当 $\sum_{n=1}^{\infty}$ $|b_{n}|$ 发散时,$\sum_{n=1}^{\infty}$ $a_{n}^{2}$ $b_{n}^{2}$ 发散.

二、解析

由题目信息可知,当 $n$ $\rightarrow$ $\infty$ 时,数列 ${a_{n}}$ 是收敛的。

方法一:反例法

A 项:

令 $a_{n}$ $=$ $b_{n}$ $=$ $(-1)^{n-1}$ $\frac{1}{\sqrt{n}}$.

则此时 ${a_{n}}$ 是一个收敛数列,$\sum_{n=1}^{\infty}$ $b_{n}$ 也收敛(根据交错级数的莱布尼茨准则判别法可得此结论),但 $\sum_{n=1}^{\infty}$ $a_{n}$ $b_{n}$ $=$ $\sum_{n=1}^{\infty}$ $\frac{1}{n}$ 发散(由常见级数的敛散性可得此结论)。

由此构成了对 A 项的反例,A 项错误。

注 1. 交错级数 $\sum_{n=1}^{\infty}$ $(-1)^{n-1}u_{n}$ $(u_{n}>0)$ 的判别法(莱布尼茨准则):

若交错级数 $\sum_{n=1}^{\infty}$ $(-1)^{n-1}u_{n}$ $(u_{n}>0)$ 满足如下条件:

① $u_{n}$ $\geqslant$ $u_{n+1}$, $(n = 1,2,3, \dotsc)$;

② $\lim$ $u_{n}$ $=$ $0$,

则交错级数收敛,其和 $S$ $\leqslant$ $u_{1}$, 余项 $|R_{n}|$ $\leqslant$ $u_{n+1}$.

注 2. 常见级数的敛散性:

$p$ 级数 $\sum_{n=1}^{\infty}$ $\frac{1}{n^{p}}$ $\left\{\begin{matrix} 收敛 & p>1,\\ 发散 & p \leqslant 1. \end{matrix}\right.$

B 项:

令 $a_{n}$ $=$ $b_{n}$ $=$ $\frac{1}{n}$, 则

$\sum_{n=1}^{\infty}$ $a_{n}$ $b_{n}$ $=$ $\sum_{n=1}^{\infty}$ $\frac{1}{n^{2}}$.

此时,数列 ${a_{n}}$ 是一个收敛数列,$\sum_{n=1}^{\infty}$ $b_{n}$ 是发散的,但是 $\sum_{n=1}^{\infty}$ $\frac{1}{n^{2}}$ 是收敛的。

由此构成了对 B 项的反例,B 项错误。

D 项:

和 B 项一样,令 $a_{n}$ $=$ $b_{n}$ $=$ $\frac{1}{n}$, 则 $\sum_{n=1}^{\infty}$ $a_{n}^{2}$ $b_{n}^{2}$ $=$ $\sum_{n=1}^{\infty}$ $\frac{1}{n^{4}}$ 是收敛的。

由此构成了对 D 项的反例,D 项错误。

综上可知,排除了 A, B, D 三个选项后,正确选项一定是 C 项。

方法二:用级数收敛的必要条件推导证明

我们可以使用级数收敛的必要条件直接证明 C 项正确。

级数 $\sum_{n=1}^{\infty}$ $u_{n}$ 收敛的必要条件:$\lim_{n \rightarrow \infty}$ $u_{n}$ $=$ $0$.

由于 $\lim_{n \rightarrow \infty}$ $u_{n}$ $=$ $0$ 是级数 $\sum_{n=1}^{\infty}$ $u_{n}$ 收敛的必要条件,因此,根据“小充分大必要”的原则,我们知道:

$\sum_{n=1}^{\infty}$ $u_{n}$ 收敛 $\Rightarrow$ $\lim_{n \rightarrow \infty}$ $u_{n}$ $=$ $0$;

$\lim_{n \rightarrow \infty}$ $u_{n}$ $=$ $0$ $\nRightarrow$ $\sum_{n=1}^{\infty}$ $u_{n}$ 收敛。

由于 $\lim_{n \rightarrow \infty}$ $a_{n}$ $=$ $0$, 从而存在 $M$ $>$ $0$, 有 $|a_{n}|$ $\leqslant$ $M$, 即:

$a_{n}^{2}$ $b_{n}^{2}$ $\leqslant$ $M^{2}$ $b_{n}^{2}$. 又因为 $\sum_{n=1}^{\infty}$ $|b_{n}|$ 收敛,故有:

$\lim_{n \rightarrow \infty}$ $|b_{n}|$ $=0$.

又根据如下定理:

设 $c$ 为非零常数,则 $\sum_{n=1}^{\infty}$ $u_{n}$ 与 $\sum_{n=1}^{\infty}$ $cu_{n}$ 具有相同的敛散性。

因此,$\sum_{n=1}^{\infty}$ $M^{2}$ $|b_{n}|$ 收敛,即:

$\lim_{n=1}^{\infty}$ $M^{2}$ $|b_{n}|$ $=$ $0$.

于是:

$\lim_{n \rightarrow \infty}$ $\frac{M^{2}|b_{n}||b_{n}|}{|b_{n}|}$ $=$ $\lim_{n \rightarrow \infty}$ $M^{2}$ $|b_{n}|$ $=$ $\lim_{n \rightarrow \infty}$ $\frac{M^{2}b_{n}^{2}}{|b_{n}|}$ $=$ $0$.

接下来,根据“比较判别法的极限形式”:

设 $\sum_{n=1}^{\infty}$ $u_{n}$ 与 $\sum_{n=1}^{\infty}$ $v_{n}$ 均为正项级数,且 $\lim_{n \rightarrow \infty}$ $\frac{u_{n}}{v_{n}}$ $=$ $A(v_{n} \neq 0)$.

① 若 $0$ $\leqslant$ $A$ $\leqslant$ $+$ $\infty$, 且 $\sum_{n=1}^{\infty}$ $v_{n}$ 收敛,则 $\sum_{n=1}^{\infty}$ $u_{n}$ 收敛.

② 若 $0$ $\leqslant$ $A$ $\leqslant$ $+$ $\infty$, 且 $\sum_{n=1}^{\infty}$ $v_{n}$ 发散,则 $\sum_{n=1}^{\infty}$ $u_{n}$ 发散.

于是我们知道,$\sum_{n=1}^{\infty}$ ${M^{2} b_{n}^{2}}$ 收敛。

又因为 $a^{2}$ $b^{2}$ $\leqslant$ $M^{2}$ $b^{2}$, 所以:

$\sum_{n=1}^{\infty}$ ${a^{2} b_{n}^{2}}$ 收敛.

由此得证 C 项正确。

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress