2015年考研数二第02题解析

题目

函数 $f(x) = \lim_{t \rightarrow 0}(1+\frac{\sin t}{x})^{\frac{x^{2}}{t}}$ 在 $(- \infty, + \infty)$ 内 $?$

$$
A. 连续
$$

$$
B. 有可去间断点
$$

$$
C. 有跳跃间断点
$$

$$
D. 有无穷间断点
$$

解析

函数 $f(x)$ 在 $x=0$ 这一点处没有定义,因此,如果 $f(x)$ 存在间断点,那么一定是在 $x=0$ 处产生。于是,我们可以对 $f(x)$ 分别在 $0$ 的左右两侧求极限,根据极限值判断该点处的情况。

$$
\lim_{x \rightarrow 0^{+}} f(x) =
$$

$$
\lim_{t \rightarrow 0, x \rightarrow 0^{+}} (1+\frac{x}{x})^{|x|} =
$$

$$
(1+1)^{0} = 1.
$$

$$
\lim_{x \rightarrow 0^{-}} f(x) =
$$

$$
\lim_{t \rightarrow 0, x \rightarrow 0^{-}}(1+\frac{-x}{x})^{|x|} =
$$

$$
(1-1)^{0} = 0^{0} = 1.
$$

注意:在高等数学中,可以认为 $0^{0} = 1$,

$\lim_{x \rightarrow 0^{+}} f(x) = \lim_{x \rightarrow 0^{-}} f(x)$, 但 $x \neq 0$, 因此,$f(x)$ 在 $x=0$ 处存在可去间断点。

综上可知,正确选项为 $B$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress