关于一点处导数存在和切线与导数之间关系的几个特例

一、题目题目 - 荒原之梦

以下四个结论中正确的是哪个?

(A) 设 $f(x)$ 在 $[-a, a]$ 是偶函数, $f_{+}^{\prime}(0)$ 存在,则 $f^{\prime}(0)$ 存在

(B) 设 $f(x)$ 在 $[-a, a]$ 是偶函数, 则 $x=0$ 是 $f(x)$ 的极值点

(C) 设 $f(x)$ 在 $[-a, a]$ 是奇函数, $f_{+}^{\prime}(0)$ 存在, 则 $f^{\prime}(0)$ 存在

(D) 设 $f(x)$ 在 $x=x_{0}$ 可导, 则曲线 $y=f(x)$ 在 $\left(x_{0}, f\left(x_{0}\right)\right)$ 处存在切线, 反之亦然

难度评级:

继续阅读“关于一点处导数存在和切线与导数之间关系的几个特例”

怎么表示切线在 X 轴上的截距?

一、题目题目 - 荒原之梦

已知 $f(x)$ 有二阶连续导数, 且 $f(0)=f^{\prime}(0)=0$, $f^{\prime \prime}(x)>0$, 又设 $u=u(x)$ 是曲线 $y=f(x)$ 在点 $(x, f(x))$ 处的切线在 $x$ 轴上的截距, 则 $\lim \limits_{x \rightarrow 0} \frac{x}{u(x)}=?$

难度评级:

继续阅读“怎么表示切线在 X 轴上的截距?”

在无穷大方向上,函数可能存在水平渐近线和倾斜渐近线

一、题目题目 - 荒原之梦

已知 $f(x)$ 在 $[0,+\infty)$ 连续, 且 $f(x)=a+g(x)$, 其中 $a \neq 0$ 为常数, $\lim \limits_{x \rightarrow+\infty} g(x)=0$,又 $\int_{0}^{+\infty} g(t) \mathrm{d} t=b$, 则 $x \rightarrow+\infty$ 时,$y=F(x) = \int_{0}^{x} f(t) \mathrm{d} t$ 有渐近线()

难度评级:

继续阅读“在无穷大方向上,函数可能存在水平渐近线和倾斜渐近线”

导数和原函数的周期性是一致的

一、题目题目 - 荒原之梦

已知 $f(x)$ 是周期为 $5$ 的连续函数, 在 $x=0$ 的某个邻域内, 满足 $f(1+\sin x)-3 f(1-\sin x)=8 x+\alpha(x)$. 其中当 $x \rightarrow 0$ 时, 函数 $\alpha(x)$ 是关于 $x$ 的高阶无穷小, 且 $f(x)$ 在 $x=1$ 点可导, 则曲线 $y=f(x)$在点 $(6, f(6))$ 处的切线方程为()

难度评级:

继续阅读“导数和原函数的周期性是一致的”

不要被这道题题目中所用的变量名迷惑了哦

一、题目题目 - 荒原之梦

已知 $A, B$ 都是不等于零的常数, 则微分方程 $y^{\prime \prime}-2 y^{\prime}+5 y=\mathrm{e}^{x} \cos 2 x$ 有特解:

(A) $y^{*}=x \mathrm{e}^{x}(A \cos 2 x+B \sin 2 x)$
(B) $y^{*}=\mathrm{e}^{x}(A \cos 2 x+B \sin 2 x)$
(C) $y^{*}=A x \mathrm{e}^{x} \cos 2 x$
(D) $y^{*}=A x \mathrm{e}^{x} \sin 2 x$

难度评级:

继续阅读“不要被这道题题目中所用的变量名迷惑了哦”

右端项为三角函数的二阶微分方程的特解你会求解吗?

一、题目题目 - 荒原之梦

若 $A, B$ 为非零常数, $k$ 为常数, 则微分方程 $y^{\prime \prime}+k^{2} y=\cos x$ 的特解可能具有形式:

(A) $A \sin x+B \cos x$
(B) $A x \cos x$
(C) $A x \sin x$
(D) $A x \sin x+B x \cos x$

难度评级:

继续阅读“右端项为三角函数的二阶微分方程的特解你会求解吗?”

只有线性无关的解才能组合形成齐次微分方程的通解

一、题目题目 - 荒原之梦

已知 $f_{1}(x), f_{2}(x)$ 为二阶常系数线性微分方程 $y^{\prime \prime}+p y^{\prime}+q y=0$ 的两个特解, $C_{1}, C_{2}$是两个任意常数, 则 $C_{1} f_{1}(x)+C_{2} f_{2}(x)$ 是该方程通解的充分条件是:

(A) $f_{1}(x) f_{2}^{\prime}(x)-f_{2}(x) f_{1}^{\prime}(x)=0$
(B) $f_{1}(x) f_{2}^{\prime}(x)+f_{2}(x) f_{1}^{\prime}(x)=0$
(C) $f_{1}(x) f_{2}^{\prime}(x)+f_{2}(x) f_{1}^{\prime}(x) \neq 0$
(D) $f_{1}(x) f_{2}^{\prime}(x)-f_{2}(x) f_{1}^{\prime}(x) \neq 0$

难度评级:

继续阅读“只有线性无关的解才能组合形成齐次微分方程的通解”

只有齐次线性方程组的解相减得到的解才一定是新的解

一、题目题目 - 荒原之梦

已知 $y_{1}(x)$ 和 $y_{2}(x)$ 是方程 $y^{\prime}+p(x) y=0$ 的两个不同的特解,则该方程的通解为:

(A) $y=C y_{1}(x)$
(B) $y=C y_{2}(x)$
(C) $y=C_{1} y_{1}(x)+C_{2} y_{2}(x)$
(D) $y=C\left(y_{1}(x)-y_{2}(x)\right)$

难度评级:

继续阅读“只有齐次线性方程组的解相减得到的解才一定是新的解”

不连续的函数可能有导数,但只有连续的函数才会一定有原函数

一、题目题目 - 荒原之梦

已知 $f(x)=\left\{\begin{array}{cc}x^{2}, & x \geqslant 0 \\ \cos x, & x<0\end{array}\right.$, $\quad g(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, 则在区间 $(-1,1)$ 上

(A) $f(x)$ 与 $g(x)$ 都存在原函数
(B) $f(x)$ 与 $g(x)$ 都不存在原函数
(C) $f(x)$ 不存在原函数, $g(x)$ 存在原函数
(D) $f(x)$ 存在原函数, $g(x)$ 不存在原函数

难度评级:

继续阅读“不连续的函数可能有导数,但只有连续的函数才会一定有原函数”

奇函数必须关于原点斜对称(一般情况下奇函数在原点处都有定义)

一、题目题目 - 荒原之梦

下列说法中错误的是哪个?

(A) 设 $f(x)$ 在 $[-a, a]$ 上连续为奇函数, 则 $f(x)$ 在 $[-a, a]$ 上的全体原函数为偶函数

(B) 设 $f(x)$ 在 $[-a, a]$ 上连续为偶函数, 则 $f(x)$ 在 $[-a, a]$ 上的全体原函数为奇函数

(C) 设 $f(x)$ 在 $(-\infty,+\infty)$ 内连续, 以 $T$ 为周期且为奇函数, 则 $\int_{0}^{x} f(t) \mathrm{d} t$ 也是以 $T$ 为周期的函数

(D) 设 $f(x)$ 在 $(-\infty,+\infty)$ 内连续, 以 $T$ 为周期, 又 $\int_{0}^{+\infty} f(x) \mathrm{d} x$ 收敛, 则 $\int_{0}^{x} f(t) \mathrm{d} t$ 也是以 $T$ 为周期的函数

难度评级:

继续阅读“奇函数必须关于原点斜对称(一般情况下奇函数在原点处都有定义)”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress