一、题目
已知,四阶方阵 $\boldsymbol{A}$ $=$ $\left[\boldsymbol{\alpha}, \boldsymbol{\gamma}_{2}, \boldsymbol{\gamma}_{3}, \boldsymbol{\gamma}_{4}\right]$, $\boldsymbol{B}$ $=$ $\left[\boldsymbol{\beta}, \boldsymbol{\gamma}_{2}, \boldsymbol{\gamma}_{3}, \boldsymbol{\gamma}_{4}\right]$, 其中 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$, $\boldsymbol{\gamma}_{2}$, $\boldsymbol{\gamma}_{3}$, $\boldsymbol{\gamma}_{4}$ 均为四维列向量,且 $|\boldsymbol{A}|=5$, $|\boldsymbol{B}|=-\frac{1}{2}$, 则 $|\boldsymbol{A}+2 \boldsymbol{B}| = ?$
难度评级:
继续阅读“行列式和矩阵的计算规则有什么区别?做了这道题就明白了!”