「荒原之梦考研数学」文章

线性相关的向量组对应的行列式一定不满秩

一、题目题目 - 荒原之梦

已知向量组 $\boldsymbol{\alpha}_{1}=(1,2,3)^{\mathrm{\top}}$, $\boldsymbol{\alpha}_{2}=(3,-1,2)^{\mathrm{\top}}$, $\boldsymbol{\alpha}_{3}=(2,3, t)^{\mathrm{\top}}$ 线性相关,则 $t=?$

难度评级:

继续阅读“线性相关的向量组对应的行列式一定不满秩”

二阶矩阵伴随矩阵的快速求解方法:主对角线对调,副对角线变号

一、题目题目 - 荒原之梦

已知,四阶矩阵 $\boldsymbol{A}$ 和 $\boldsymbol{B}$ 满足 $2 \boldsymbol{A B} \boldsymbol{A}^{-1}=\boldsymbol{A B}+6 \boldsymbol{E}$, 若 $\boldsymbol{A}=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -1 & 0\end{array}\right]$, 则 $\boldsymbol{B}=?$

难度评级:

继续阅读“二阶矩阵伴随矩阵的快速求解方法:主对角线对调,副对角线变号”

不是所有题目都有巧妙做法:这道常数矩阵的逆矩阵题目直接算就很简单

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$, 则 $\left(\frac{1}{3} \boldsymbol{A}\right)^{-1}=?$

难度评级:

继续阅读“不是所有题目都有巧妙做法:这道常数矩阵的逆矩阵题目直接算就很简单”

逆矩阵的转置矩阵有啥性质你知道吗?

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}, \boldsymbol{B}$ 均为 $n$ 阶矩阵,且 $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{E}$, 则 $(\boldsymbol{E}+\boldsymbol{B} \boldsymbol{A})\left[\boldsymbol{E}-\boldsymbol{B}\left(\boldsymbol{E}+\boldsymbol{A}^{\top} \boldsymbol{B}^{\top}\right)^{-1} \boldsymbol{A}\right]=?$

难度评级:

关于可逆矩阵的性质,可以参考《可逆矩阵的性质汇总

继续阅读“逆矩阵的转置矩阵有啥性质你知道吗?”

求解具体矩阵时一定记得先用对应的抽象矩阵公式化简

一、题目题目 - 荒原之梦

已知,三阶矩阵 $\boldsymbol{A}$ 的逆矩阵为 $\boldsymbol{A}^{-1}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, 则矩阵 $\boldsymbol{A}$ 的伴随矩阵 $\boldsymbol{A^{*}}$ 的逆矩阵 $\left(A^{*}\right)^{-1}=?$

难度评级:

继续阅读“求解具体矩阵时一定记得先用对应的抽象矩阵公式化简”

可导必连续:连续不一定可导,不连续一定不可导

一、题目题目 - 荒原之梦

已知 $f(x)=\left\{\begin{array}{cc}x^{2}, & x \leqslant 0, \\ x^{a} \sin \frac{1}{x}, & x>0,\end{array}\right.$ 若 $f(x)$ 可导,则 $\alpha$ 应满足什么条件?若 $f^{\prime}(x)$ 连续,则 $\alpha$ 应满足什么条件?

难度评级:

继续阅读“可导必连续:连续不一定可导,不连续一定不可导”

解这道题需要注意两点:可导必连续、一点处的导数要用定义求解

一、题目题目 - 荒原之梦

已知 $f(x)=\left\{\begin{array}{cl}\frac{\ln (1+b x)}{x}, & x \neq 0 \\ -1, & x=0,\end{array}\right.$ 其中 $b$ 为某常数,$f(x)$ 在定义域上处处可导,则 $f^{\prime}(x)=?$

难度评级:

继续阅读“解这道题需要注意两点:可导必连续、一点处的导数要用定义求解”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress