一、题目
$$
\Bigg[ \int_{x}^{y} f(x+y – t) \mathrm{d} t \Bigg]^{\prime}_{x} = ?
$$
$$
\Bigg[ \int_{x}^{y} f(x+y – t) \mathrm{d} t \Bigg]^{\prime}_{y} = ?
$$
继续阅读“变限积分被积函数中同时含有积分上下限该求导?”补充资料:
[1]. 多种形式的变限积分求导方法总结.
$$
\Bigg[ \int_{x}^{y} f(x+y – t) \mathrm{d} t \Bigg]^{\prime}_{x} = ?
$$
$$
\Bigg[ \int_{x}^{y} f(x+y – t) \mathrm{d} t \Bigg]^{\prime}_{y} = ?
$$
继续阅读“变限积分被积函数中同时含有积分上下限该求导?”补充资料:
[1]. 多种形式的变限积分求导方法总结.
已知,有 $u(x, y)$ $=$ $u(\sqrt{x^{2} + y^{2}})$, $r$ $=$ $\sqrt{x^{2} + y^{2}}$ $>$ $0$.
并且已知函数 $u(x, y)$ 有二阶连续的偏导数,要求计算:
$\frac{\partial u}{\partial x}$、$\frac{\partial ^{2} u}{\partial x^{2}}$、$\frac{\partial u}{\partial y}$、$\frac{\partial ^{2} u}{\partial y^{2}}$.
继续阅读“一个复合函数求二阶偏导的例题:$u(x, y)$ $=$ $u(\sqrt{x^{2} + y^{2}})$”$Z^{*}$ $=$ $\begin{bmatrix} \textcolor{red}{A}_{\textcolor{orange}{1} \textcolor{orange}{1}} & \textcolor{red}{A}_{\textcolor{cyan}{2} \textcolor{cyan}{1}} \\ \textcolor{red}{A}_{\textcolor{orange}{1} \textcolor{orange}{2}} & \textcolor{red}{A}_{\textcolor{cyan}{2} \textcolor{cyan}{2}} \end{bmatrix}$