问题
已知 $k$ 为常数且 $k$ $\neq$ $0$, 则根据可逆矩阵的性质,若 $\textcolor{orange}{\boldsymbol{A}}$ 可逆,则 $\textcolor{orange}{k \boldsymbol{A}}$ 是否可逆?选项
[A]. 是[B]. 否
方程 $y^{\prime \prime}$ $+$ $y^{\prime}$ $-$ $2 y$ $=$ $(6x + 2) e^{x}$ 满足条件 $y(0)$ $=$ $3$, $y^{\prime}(0)$ $=$ $0$ 的特解 $y^{*}$ $=$ $?$
继续阅读“计算微分方程 $y^{\prime \prime}$ $+$ $y^{\prime}$ $-$ $2 y$ $=$ $(6x + 2) e^{x}$ 满足指定条件的特解”微分方程 $y$ $y^{\prime \prime}$ $+$ $2$ $(y^{\prime})^{2}$ $=$ $0$ 满足初始条件 $y(0)$ $=$ $1$, $y^{\prime}(0)$ $=$ $-1$ 的特解是?
继续阅读“计算微分方程 $y$ $y^{\prime \prime}$ $+$ $2$ $(y^{\prime})^{2}$ $=$ $0$ 满足给定初始条件的特解”