一、题目
已知 $f(x)=\left\{\begin{array}{cc}x^{2}, & x \geqslant 0 \\ \cos x, & x<0\end{array}\right.$, $\quad g(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, 则在区间 $(-1,1)$ 上
(A) $f(x)$ 与 $g(x)$ 都存在原函数
(B) $f(x)$ 与 $g(x)$ 都不存在原函数
(C) $f(x)$ 不存在原函数, $g(x)$ 存在原函数
(D) $f(x)$ 存在原函数, $g(x)$ 不存在原函数
难度评级:
继续阅读“不连续的函数可能有导数,但只有连续的函数才会一定有原函数”