题目
设 $z=f(x,y)$ 是由 $e^{2yz} + x + y^{2} + z = \frac{7}{4}$ 确定的函数,则 $d z |_{(\frac{1}{2}, \frac{1}{2})} = ?$
解析
本题是涉及全微分计算的题目,考研真题中已多次考到该知识。
将 $x=\frac{1}{2}$, $y=\frac{1}{2}$ 代入 $e^{2yz} + x + y^{2} + z = \frac{7}{4}$ 得:
$$
e^{z} + \frac{1}{2} + \frac{1}{4} + z = \frac{7}{4} \Rightarrow
$$
$$
e^{z} + z = 1 \Rightarrow
$$
$$
z = 0.
$$
在式子 $e^{2yz} + x + y^{2} + z = \frac{7}{4}$ 等号两端对 $x$ 求偏导得:
$$
e^{2yz} \cdot 2y \cdot \frac{\partial z}{\partial x} + 1 + \frac{\partial z}{\partial x} = 0. ①
$$
在式子 $e^{2yz} + x + y^{2} + z = \frac{7}{4}$ 等号两端对 $y$ 求偏导得:
$$
e^{2yz} \cdot 2 [z + y \cdot \frac{\partial z}{\partial y}] + 2y + \frac{\partial z}{\partial y} = 0. ②
$$
将 $x=\frac{1}{2}$, $y=\frac{1}{2}$, $z=0$ 带入 $①$ 式得:
$$
2 \cdot \frac{\partial z}{\partial x} = -1 \Rightarrow
$$
$$
\frac{\partial z}{\partial x} = – \frac{1}{2}.
$$
将 $x=\frac{1}{2}$, $y=\frac{1}{2}$, $z=0$ 带入 $②$ 式得:
$$
2 \cdot \frac{\partial z}{\partial y} = -1 \Rightarrow
$$
$$
\frac{\partial z}{\partial y} = – \frac{1}{2}.
$$
又:
$$
dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy.
$$
于是:
$$
dz = – \frac{1}{2}dx – \frac{1}{2}dy.
$$
综上可知,正确答案为 $- \frac{1}{2}dx – \frac{1}{2}dy$.
EOF