微分方程和洛必达运算的结合

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

思考过程

求解过程

根据题目,我们知道:

$$
\textcolor{springgreen}{\lim \limits_{x \rightarrow 0} y(x)} = y(0) = \textcolor{springgreen}{0}
$$

$$
\textcolor{springgreen}{\lim \limits_{x \rightarrow 0} y^{\prime}(0)} = y^{\prime}(0) = \textcolor{springgreen}{0}
$$

又因为:

$$
y^{\prime \prime} + 2 y^{\prime} + y = \mathrm{e}^{3 x} \Rightarrow
$$

$$
y^{\prime \prime} = \mathrm{e}^{3 x} – 2 y^{\prime} – y
$$

所以:

$$
\begin{aligned}
\textcolor{springgreen}{\lim \limits_{x \rightarrow 0} y^{\prime \prime}(x)} \\ \\
& = \lim \limits_{x \rightarrow 0}\left[\mathrm{e}^{3x} – 2 y^{\prime}(x)-y(x)\right] \\ \\
& = 1- 0 – 0 \\ \\
& = \textcolor{springgreen}{1}
\end{aligned}
$$

至此,我们已经有了 $\lim \limits_{x \rightarrow 0} y(x)$, $\lim \limits_{x \rightarrow 0} y^{\prime}(x)$ 和 $\lim \limits_{x \rightarrow 0} y^{\prime \prime}(x)$ 的值了,可以尝试构造式子并进行洛必达运算。

对于 (A) 选项:

$$
\begin{aligned}
\lim \limits_{x \rightarrow 0} \frac{\sin x^{2}}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{x^{2}}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{2x}{y^{\prime}(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{2}{y^{\prime \prime}(x)} \\ \\
& = \frac{2}{1} = \textcolor{orangered}{2 \neq 1}
\end{aligned}
$$

于是可排除 (A) 选项。

对于 (B) 选项:

$$
\begin{aligned}
\lim \limits_{x \rightarrow 0} \frac{\sin x}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{x}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{1}{y^{\prime}(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{0}{y^{\prime \prime}(x)} \\ \\
& = \frac{0}{1} = \textcolor{orangered}{0 \neq 1}
\end{aligned}
$$

于是可排除 (B) 选项。

对于 (C) 选项:

$$
\begin{aligned}
\lim \limits_{x \rightarrow 0} \frac{\ln \sqrt{1+x^{2}}}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{\frac{1}{2} \ln \left(1+x^{2}\right)}{y(x)} \\ \\
& = \frac{1}{2} \lim \limits_{x \rightarrow 0} \frac{x^{2}}{y(x)} \\ \\
& = \frac{1}{2} \lim \limits_{x \rightarrow 0} \frac{2 x}{y^{\prime}(x)} \\ \\
& = \frac{1}{2} \lim \limits_{x \rightarrow 0} \frac{2}{y^{\prime \prime}(x)} \\ \\
& = \textcolor{springgreen}{\boldsymbol{\frac{1}{2} \times 2 = 1}}
\end{aligned}
$$

于是可知,(C) 选项正确。

对于 (D) 选项:

$$
\begin{aligned}
\lim \limits_{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{x^{2}}{y(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{2 x}{y^{\prime}(x)} \\ \\
& = \lim \limits_{x \rightarrow 0} \frac{2}{y^{\prime \prime}(x)} \\ \\
& = \textcolor{orangered}{2 \neq 1}
\end{aligned}
$$

于是可排除 (D) 选项。

综上可知, C 荒原之梦考研数学 | 本文结束


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress