一、题目
已知 $f(x)=\left\{\begin{array}{cl}\frac{\ln (1+b x)}{x}, & x \neq 0 \\ -1, & x=0,\end{array}\right.$ 其中 $b$ 为某常数,$f(x)$ 在定义域上处处可导,则 $f^{\prime}(x)=?$
难度评级:
二、解析
由可导必连续可知:
$$
\lim \limits_{x \rightarrow 0} \frac{\ln (1+b x)}{x}=\lim \limits_{x \rightarrow 0} \frac{b x}{x}=-1 \Rightarrow b=-1
$$
当 $x \neq 0$ 时:
$$
\left(\frac{\ln (1-x)}{x}\right)^{\prime}=\frac{\frac{-x}{1-x}-\ln (1-x)}{x^{2}}=
$$
$$
\frac{-x(1-x) \ln (1-x)}{(1-x) x^{2}}.
$$
接着,我们需要利用一点处导数的定义求解 $x = 0$ 处的导数:
$$
f^{\prime}(0)=\lim \limits_{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim \limits_{x \rightarrow 0} \frac{\frac{\ln (1-x)}{x}+1}{x}
$$
$$
\lim \limits_{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}} \Rightarrow x=-x \Rightarrow \lim \limits_{-x \rightarrow 0} \frac{\ln (1+x)-x}{(-x)^{2}}=
$$
$$
\lim \limits_{x \rightarrow 0} \frac{-\frac{1}{2} x^{2}}{x^{2}}=-\frac{1}{2}.
$$
当然,对 $\lim \limits_{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}}$ 的求解也可以通过泰勒公式进行:
由泰勒公式可知:
$$
\ln (1+x)=x-\frac{1}{2} x^{2}+o\left(x^{2}\right) \Rightarrow
$$
$$
\ln (1-x)=-x-\frac{1}{2} x^{2}+o\left(x^{2}\right).
$$
此外,对 $\lim \limits_{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}}$ 的求解也可以通过洛必达运算进行:
$$
\lim \limits_{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}} \Rightarrow \lim \limits_{x \rightarrow 0} \frac{\frac{-1}{1-x} + 1}{2x} =
$$
$$
\lim \limits_{x \rightarrow 0} \frac{-1 + 1 – x}{2x (1-x)} = \lim \limits_{x \rightarrow 0} \frac{- x}{2x – 2x^{2}} = \lim \limits_{x \rightarrow 0} \frac{- x}{2x} = \frac{-1}{2}
$$
于是:
$$
\lim \limits_{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}}=\lim \limits_{x \rightarrow 0} \frac{-x-\frac{1}{2} x^{2}+x}{x^{2}}=-\frac{1}{2}.
$$
综上可知:
$$
f^{\prime}(x) = \begin{cases}
\frac{-x(1-x) \ln (1-x)}{(1-x) x^{2}}, & x \neq 0;\\
\frac{-1}{2}, & x = 0
\end{cases}
$$