一、前言
在本文中,「荒原之梦考研数学」将通过一个特别设计的矩阵 $\begin{bmatrix}
a & d & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{bmatrix}$ 来给同学们讲清楚什么是矩阵乘法中的“左行右列”性质.
在本文中,「荒原之梦考研数学」将通过一个特别设计的矩阵 $\begin{bmatrix}
a & d & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{bmatrix}$ 来给同学们讲清楚什么是矩阵乘法中的“左行右列”性质.
根据矩阵的性质,我们知道,如果矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 等价或者相似,那么,就会存在下面这样的秩相等的链式关系式:
$$
\textcolor{lightgreen}{
\mathrm{r} \begin{pmatrix} \boldsymbol{A} \end{pmatrix} = \mathrm{r} \begin{pmatrix} \boldsymbol{B} \end{pmatrix} = \mathrm{r} \begin{pmatrix} \boldsymbol{A}, \boldsymbol{B} \end{pmatrix} = \mathrm{r} \begin{pmatrix}
\boldsymbol{A} \\
\boldsymbol{B}
\end{pmatrix}
}
$$
在本文中,「荒原之梦考研数学」将通过图示的方式,让同学们可以通过图形的方式,更加形象的对上面的公式有一个深入的理解。
继续阅读“图解等价/相似矩阵的链式等秩公式”设矩阵 $\boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$, $\boldsymbol{B} = \boldsymbol{A}^{2} – 3 \boldsymbol{A} + 2 \boldsymbol{E}$, 则 $\boldsymbol{B}^{-1} = \underline{\quad \quad \quad}$
继续阅读“求解逆矩阵的三种方法”通过《求解分块矩阵的伴随矩阵》这篇文章,我们学会了如何快速求解分块矩阵的伴随矩阵,即:
$$
\begin{bmatrix} \boldsymbol{A} & \boldsymbol{E} \\ \boldsymbol{O} & \boldsymbol{B} \end{bmatrix}^{*} = \begin{bmatrix} |\boldsymbol{B}| \boldsymbol{A}^{*} & – \boldsymbol{A}^{*} \boldsymbol{B}^{*} \\ \boldsymbol{O} & |\boldsymbol{A}| \boldsymbol{B}^{*} \end{bmatrix}
$$
又根据《一阶矩阵的伴随矩阵是多少?》这篇文章可知,如果矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 都是一阶矩阵的话,则:
$$
\boldsymbol{A}^{*} = \boldsymbol{B}^{*} = \begin{bmatrix} 1 \end{bmatrix}
$$
于是,对于一个形如 $\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ 的二阶矩阵,其伴随矩阵的计算公式为:
$$
\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}^{*} = \begin{bmatrix}
|b| \cdot 1 & -1 \cdot 1 \\
0 & a \cdot 1
\end{bmatrix} = \begin{bmatrix}
b & -1 \\
0 & a
\end{bmatrix}
$$
但是,直接使用针对分块矩阵的伴随矩阵计算公式,只能计算类似 $\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ 这样的二阶矩阵的伴随矩阵,接下来,我们就来看看如何快速计算任意一个二阶矩阵的伴随矩阵.
继续阅读“快速求解二阶矩阵的伴随矩阵:主对调、副变号”已知,矩阵 $\boldsymbol{A}$ 满足 $a \boldsymbol{A}^{2} + b \boldsymbol{A} + c \boldsymbol{E}$ $=$ $0$, 其中 $c \neq 0$.
请证明:矩阵 $\boldsymbol{A}$ 可逆,并求解 $\boldsymbol{A}^{-1}$.
继续阅读“逆矩阵快速求解公式:满足一元二次方程形式的矩阵”当矩阵的乘法和转置运算结合的时候,有如下运算律:
$$
\textcolor{yellow}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$
从上面这条定理出发,我们可以验证任意多个矩阵相乘时的转置运算律。例如,若令矩阵 $\boldsymbol{B}$ $=$ $\boldsymbol{C} \boldsymbol{D}$, 则:
$$
\begin{aligned}
& \ (\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top} \\
\Rightarrow & \ [\boldsymbol{A} (\boldsymbol{C} \boldsymbol{D})]^{\top} = (\boldsymbol{C} \boldsymbol{D})^{\top} \boldsymbol{A}^{\top} \\
\Rightarrow & \ [\boldsymbol{A} \boldsymbol{C} \boldsymbol{D}]^{\top} = \boldsymbol{D}^{\top} \boldsymbol{C}^{\top} \boldsymbol{A}^{\top} \\
\end{aligned}
$$
在本文中,「荒原之梦考研数学」将使用原创的“峰式画线法”证明矩阵乘法的转置运算律。
继续阅读“用“峰式画线法”证明矩阵乘法的转置运算律”zhaokaifeng.com
Note
在本文中,「荒原之梦考研数学」将使用一般具体的矩阵证明下面的定理(矩阵乘法的转置运算律):
$$
\textcolor{springgreen}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$
在本文中,「荒原之梦考研数学」将使用完全抽象的矩阵证明下面的定理(矩阵乘法的转置运算律):
$$
\textcolor{springgreen}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$
在「荒原之梦考研数学」的另一篇文章《矩阵/行列式 的一个优化策略》中,我们首次提出了在包含多个 $0$ 元素的矩阵/行列式中 的一个优化策略,那么,如果初始的矩阵/行列式中没有 $0$ 元素,或者只有少量的 $0$ 元素该怎么办呢?
在本文中,我们将以矩阵/行列式的主对角线为基准,通过元素复杂度梯度排列的方式,给同学们提供一种适用性更广泛的矩阵/行列式化简的方法。
继续阅读“基于主对角线元素复杂度梯度的矩阵/行列式化简策略”在对高阶行列式进行计算的时候,其中一种计算方式就是“升阶”,也就是将原来的 $n$ 阶行列式升为 $n+1$ 阶行列式。
那么,什么样的行列式可以尝试升阶操作?怎么进行升阶操作?升阶之后该怎么进行接下来的计算呢?
在本文中,「荒原之梦考研数学」将就以上问题为同学们详细讲解。
继续阅读“投石问路:线性代数中的升阶法详解”大部分时候,在对矩阵或者行列式进行运算的时候,我们都倾向于通过初等变换使得矩阵/行列式中产生更多的 $0$ 元素,或者说倾向于将矩阵/行列式中的非 $0$ 元素消为 $0$ 元素(在本文中,我们将这一类操作简称为“消 $0$”)。
那么,在消 $0$ 的时候,有什么注意事项呢?该采取什么样的策略,才能尽可能又快又多地消出来更多的 $0$ 元素呢?
在本文中,「荒原之梦考研数学」将为同学们详细讲解。
继续阅读“矩阵/行列式消 $0$ 的一个优化策略”求解逆矩阵是线性代数中的一个基本知识点。在考试时的时候,要求解的逆矩阵一般是二阶或者三阶的矩阵,在本文中,「荒原之梦考研数学」就给同学们一个二阶矩阵的快速求逆公式以及该公式的记忆方法。
继续阅读“二阶矩阵的快速求逆公式”