问题
根据伴随矩阵的性质,$\left(\boldsymbol{A}^{*}\right)^{\mathrm{T}}$ 与 $\left(\boldsymbol{A}^{\mathrm{T}}\right)^{*}$ 是否相等?选项
[A]. 相等[B]. 不相等
那么,$\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $?$
则,$\boldsymbol{A A}^{*}$ $=$ $\boldsymbol{A}^{*} \boldsymbol{A}$ $=$ $?$
$Z^{*}$ $=$ $\begin{bmatrix} \textcolor{red}{A}_{\textcolor{orange}{1} \textcolor{orange}{1}} & \textcolor{red}{A}_{\textcolor{cyan}{2} \textcolor{cyan}{1}} \\ \textcolor{red}{A}_{\textcolor{orange}{1} \textcolor{orange}{2}} & \textcolor{red}{A}_{\textcolor{cyan}{2} \textcolor{cyan}{2}} \end{bmatrix}$