一、前言 
根据罗尔定理可知,如果函数 $f(x)$ 满足在闭区间 $[\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b}]$ 上连续;在开区间 $(\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b})$ 内可微分;在区间端点处的函数值相等,即 $f(\textcolor{#3C78D8}{a}) = f(\textcolor{#3C78D8}{b})$, 则至少有一个点 $\textcolor{#FFD966}{\xi} \in (\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b})$, 使得 $f^{\prime}(\textcolor{#FFD966}{\xi}) = 0$, 也就是说,$\textcolor{#FFD966}{\xi}$ 就是函数 $f(x)$ 的一个驻点。
那么,如果,$f(\textcolor{#3C78D8}{a}) = f(\textcolor{#3C78D8}{b}) = 0$, 也就是函数 $f(x)$ 与坐标轴的 $X$ 轴存在两个交点 $\textcolor{#3C78D8}{a}$ 和 $\textcolor{#3C78D8}{b}$ 的时候,是否就意味着在区间 $(\textcolor{#3C78D8}{a}, \textcolor{#3C78D8}{b})$ 上一定会存在至少一个函数 $f(x)$ 的驻点呢?
在本文中,「荒原之梦考研数学」将为同学们深入图解这一问题。
继续阅读“有 $N$ 个零点的函数,一定至少有 $N-1$ 个驻点吗?”