2023年考研数二第09题解析:二次型的规范型

一、题目题目 - 荒原之梦

二次型 $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}-4\left(x_{2}-x_{3}\right)^{2}$ 的规范形为 ( )

(A) $y_{1}^{2}+y_{2}^{2}$

(C) $y_{1}^{2}+y_{2}^{2}-4 y_{3}^{2}$

(B) $y_{1}^{2}-y_{2}^{2}$

(D) $y_{1}^{2}+y_{2}^{2}-y_{3}^{2}$

难度评级:

继续阅读“2023年考研数二第09题解析:二次型的规范型”

2023年考研数二第08题解析:伴随矩阵的性质在分块矩阵上的推广

一、题目题目 - 荒原之梦

设 $A, B$ 为 $n$ 阶可逆矩阵, $E$ 为 $n$ 阶单位矩阵, $M^{*}$ 为矩阵 $M$ 的伴随矩阵,则 $\left(\begin{array}{ll}A & E \\ O & B\end{array}\right)^{*}=(\quad)$

(A) $\left(\begin{array}{cc}|A| B^{*} & -B^{*} A^{*} \\ 0 & A^{*} B^{*}\end{array}\right)$

(C) $\left(\begin{array}{cc}|B| A^{*} & -B^{*} A^{*} \\ 0 & |A| B^{*}\end{array}\right)$

(B) $\left(\begin{array}{cc}|A| B^{*} & -A^{*} B^{*} \\ 0 & |B| A^{*}\end{array}\right)$

(D) $\left(\begin{array}{cc}|B| A^{*} & -A^{*} B^{*} \\ 0 & |A| B^{*}\end{array}\right)$

难度评级:

继续阅读“2023年考研数二第08题解析:伴随矩阵的性质在分块矩阵上的推广”

2023年考研数二第07题解析:极值点与拐点和一阶导二阶导之间的关系

一、题目题目 - 荒原之梦

设函数 $f(x)=\left(x^{2}+a\right) e^{x}$, 若 $f(x)$ 没有极值点, 但曲线 $y=f(x)$ 有拐点, 则 $a$ 的取值范围是( )

(A) $[0,1)$

(C) $[1,2)$

(B) $[1,+\infty)$

(D) $[2,+\infty)$

难度评级:

继续阅读“2023年考研数二第07题解析:极值点与拐点和一阶导二阶导之间的关系”

2023年考研数二第06题解析:换元积分、指数函数的求导法则

一、题目题目 - 荒原之梦

若函数 $f(\alpha)=\int_{2}^{+\infty} \frac{1}{x(\ln x)^{\alpha+1}} \mathrm{~d} x$ 在 $\alpha=\alpha_{0}$ 处取得最小值, 则 $\alpha_{0}=?$

A. $-\frac{1}{\ln (\ln 2)}$

C. $\frac{1}{\ln 2}$

B. $-\ln (\ln 2)$

D. $\ln 2$

难度评级:

继续阅读“2023年考研数二第06题解析:换元积分、指数函数的求导法则”

2023年考研数二第05题解析:参数方程求导、导数存在性定理

一、题目题目 - 荒原之梦

设函数 $y=f(x)$ 由 $\left\{\begin{array}{l}x=2 t+|t| \\ y=|t| \sin t\end{array}\right.$ 确定, 则 ( )

(A) $f(x)$ 连续, $f^{\prime}(0)$ 不存在

(B) $f^{\prime}(0)$ 不存在, $f(x)$ 在 $x=0$ 处不连续

(C) $f^{\prime}(x)$ 连续, $f^{\prime \prime}(0)$ 不存在

(D) $f^{\prime \prime}(0)$ 存在, $f^{\prime \prime}(x)$ 在 $x=0$ 处不连续

难度评级:

继续阅读“2023年考研数二第05题解析:参数方程求导、导数存在性定理”

2023年考研数二第04题解析:二阶常系数微分方程解的性质

一、题目题目 - 荒原之梦

已知微分方程 $y^{\prime \prime}+a y^{\prime}+b y=0$ 的解在 $(-\infty,+\infty)$ 上有界, 则 $a, b$ 的取值范围为 ( )

(A) $a<0, b>0$

(C) $a=0, b>0$

(B) $a>0, b>0$

(D) $a=0, b<0$

难度评级:

继续阅读“2023年考研数二第04题解析:二阶常系数微分方程解的性质”

2023年考研数二第03题解析:数列比较大小

一、题目题目 - 荒原之梦

设数列 $\left\{x_{n}\right\} ,\left\{y_{n}\right\}$ 满足 $x_{1}=y_{1}=\frac{1}{2}, x_{n+1}=\sin x_{n}, y_{n+1}=y_{n}^{2}$, 当 $n \rightarrow \infty$ 时 ( )

(A) $x_{n}$ 是 $y_{n}$ 的高阶无穷小

(B) $y_{n}$ 是 $x_{n}$ 的高阶无穷小

(C) $x_{n}$ 是 $y_{n}$ 的等价无穷小

(D) $x_{n}$ 是 $y_{n}$ 的同阶但非等价无穷小

难度评级:

继续阅读“2023年考研数二第03题解析:数列比较大小”

2023年考研数二第02题解析:分段函数、导函数的性质

一、题目题目 - 荒原之梦

函数 $f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{1+x^{2}}}, x \leq 0 \\ (x+1) \cos x, x>0\end{array}\right.$ 的原函数为 ( )

(A) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}-x\right), x \leq 0 \\ (x+1) \cos x-\sin x, x>0\end{array}\right.$

(B) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}-x\right)+1, x \leq 0 \\ (x+1) \cos x-\sin x, x>0\end{array}\right.$

(C) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}-x\right), x \leq 0 \\ (x+1) \sin x+\cos x, x>0\end{array}\right.$

(D) $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^{2}}+x\right)+1, x \leq 0 \\ (x+1) \sin x+\cos x, x>0\end{array}\right.$

难度评级:

继续阅读“2023年考研数二第02题解析:分段函数、导函数的性质”

导数不存在不一定没有切线:导数不能以极限的形式存在,但是切线可以以极限的形式存在

一、题目题目 - 荒原之梦

已知 $f(x)=\left\{\begin{array}{cl}\sqrt{x}, & x \geqslant 0 \\ \sqrt{-x}, & x<0\end{array}\right.$, 则:

(A) $f(x)$ 在 $x=0$ 不连续

(B) $f^{\prime}(0)$ 存在

(C) $f^{\prime}(0)$ 不存在, 曲线 $y=f(x)$ 在 $(0,0)$ 不存在切线

(D) $f^{\prime}(0)$ 不存在, 曲线 $y=f(x)$ 在 $(0,0)$ 有切线

难度评级:

继续阅读“导数不存在不一定没有切线:导数不能以极限的形式存在,但是切线可以以极限的形式存在”

震荡无极限的三角函数 sin 和 cos 具有“自限性”

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

首先:

$$
\left(\int_{0}^{x^{2}} \sin t \mathrm{~ d} t\right)_{x}^{\prime}=2 x \sin x^{2} \sim k x^{3} \Rightarrow
$$

$$
\int_{0}^{x^{2}} \sin t \mathrm{~ d} t \sim k x^{4}
$$

所以:

$$
\lim \limits_{x \rightarrow 0^{+}} \frac{x^{3}}{x} \sin \frac{1}{x}=0
$$

$$
\lim \limits_{x \rightarrow 0^{-}} \frac{1}{x} \int_{0}^{x^{3}} \sin t \mathrm{~ d} t \approx \lim \limits_{x \rightarrow 0^{-}} x^{3}=0
$$

于是可知,$f(x)$ 在 $x = 0$ 处

又:

$$
f^{\prime}\left(0^{+}\right)=\lim \limits_{x \rightarrow 0^{+}} \frac{f(x)-0}{x}=0
$$

$$
f^{\prime}\left(0^{-}\right)=\lim \limits_{x \rightarrow 0^{-}} \frac{f(x)-0}{x}=0
$$

于是可知,$f(x)$ 在 $x = 0$ 处

但是,由于:

$$
\left(\frac{1}{x} \int_{0}^{x^{2}} \sin t \mathrm{~ d} t\right)_{x}^{\prime}=\frac{-1}{x^{2}} \int_{0}^{x^{2}} \sin t \mathrm{~ d} t+\frac{1}{x} \cdot 2 x \sin x^{2} \neq 0
$$

于是可知,$f(x)$ 在 $x = 0$ 处


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

一点处导数是“该点处”的导数,而不是“趋于该点处”的导数

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 在 $x=x_{0}$ 某邻域有定义,则存在函数 $g(x)$ 在 $x_{0}$ 处连续并使 $f(x) – f\left(x_{0}\right)=\left(x-x_{0}\right) g(x)$ 是 $f(x)$ 在 $x=x_{0}$ 处可导的充要条件吗?

难度评级:

继续阅读“一点处导数是“该点处”的导数,而不是“趋于该点处”的导数”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress