前言
秩为 $1$ 的矩阵具有的一些独特性质往往能够帮助我们解决一些线性代数方面的题目,本文将对此做一个总结,以作参考。
继续阅读“[线代]秩为 1 的矩阵的一些性质”无穷大 $(\infty)$ 与正无穷大 $(+ \infty)$ 和负无穷大 $(- \infty)$ 之间的关系可能会让人感到困惑进而影响高数题目的求解。本文将对此做一个分析说明,以作参考。
继续阅读“关于 $\infty$、$+\infty$、$- \infty$ 和无穷小之间关系的分析”根据题目可以知道,本文【主要】分析的是“【非齐次】线性方程组系数矩阵自由未知数的个数与其线性无关的特解的个数之间的关系”。
在这里,我首先给出我的分析结果:他们之间【没有关系】。
即:【非齐次】线性方程组系数矩阵自由未知数的个数与其线性无关的特解的个数之间没有确切的关系。如果要确定一个非齐次线性方程组究竟有多少线性无关的特解,则【可能】需要对非齐次线性方程组的系数矩阵和增广矩阵的结构有更深入的研究,但这不在本文的分析范围之内。
本文将通过一个具体的例子验证我的上述判断并由此延伸,给出一个关于“【齐次】线性方程组系数矩阵自由未知数的个数与其线性无关的特解的个数之间的关系”——同样地,他们之间也是【没有关系】。
继续阅读“[线代](非齐/齐)次线性方程组系数矩阵自由未知数的个数与其线性无关的特解的个数之间的关系”在解题的过程中,把某些变量,例如 “$x$” 看作常数可以方便对题目的理解并提升解题效率。本文将简要探讨哪些情况下可以把哪个或哪些变量看作常数进行处理,以作参考。
继续阅读“[高数]什么情况下可以把 $x$ 看作常数”微分方程 $y^{”} – \lambda^{2}y = e^{\lambda x} + e^{- \lambda x} (\lambda > 0)$ 的特解形式为 $?$
$$
A. a (e^{\lambda x} + e^{- \lambda x})
$$
$$
B. ax (e^{\lambda x} + e^{- \lambda x})
$$
$$
C. x (ae^{\lambda x} + be^{- \lambda x})
$$
$$
D. x^{2} (ae^{\lambda x} + be^{- \lambda x})
$$
函数 $f(x) = \ln |(x-1)(x-2)(x-3)|$ 的驻点个数为 $?$
$$
A. 0
$$
$$
B. 1
$$
$$
C. 2
$$
$$
D. 3
$$
要理解为什么 $(\ln |x|)^{\prime}=\frac{1}{x}$, 只需要知道:
在求导时,只要涉及的自变量不是 $x$ 这样的【单一的自变量】,就需要考虑使用【复合函数求导】的公式。
继续阅读“为什么 $(\ln |x|)^{\prime}$ $=$ $\frac{1}{x}$ ?”设函数 $f(x)$ 在 $x=0$ 处可导,且 $f(0)=0$, 则 $\lim_{x \rightarrow 0} \frac{x^{2} f(x) – 2f(x^{3})}{x^{3}} = ?$
$$
A. -2f^{‘}(0)
$$
$$
B. -f^{‘}(0)
$$
$$
C. f^{‘}(0)
$$
$$
D. 0
$$
已知当 $x \rightarrow 0$ 时,函数 $f(x) = 3 \sin x – \sin 3x$ 与 $cx^{k}$ 是等价无穷小,则 $?$
$$
A. k=1,c=4
$$
$$
B. k=1,c=-4
$$
$$
C. k=3,c=4
$$
$$
D. k=3,c=-4
$$