2012 年研究生入学考试数学二试卷中的题目与解析。
继续阅读“2012年考研数二真题解析汇总”分类: 考研数学
2012年考研数二第14题解析
题目
设 $A$ 为三阶矩阵,$|A|=3$, $A^{}$ 为 $A$ 的伴随矩阵,若交换 $A$ 的第一行与第二行得矩阵 $B$, 则 $|BA^{}|=?$
继续阅读“2012年考研数二第14题解析”2012年考研数二第13题解析
2012年考研数二第12题解析
2012年考研数二第11题解析
题目
设 $z = f(\ln x + \frac{1}{y})$, 其中函数 $f(u)$ 可微,则 $x \frac{\partial z}{\partial x} + y^{2} \frac{\partial z}{\partial y} = ?$
继续阅读“2012年考研数二第11题解析”2012年考研数二第10题解析
题目
计算 $\lim_{n \rightarrow \infty} n ( \frac{1}{1+n^{2}} + \frac{1}{2^{2}+n^{2}} + \cdot \cdot \cdot + \frac{1}{n^{2}+n^{2}} ) = ?$
继续阅读“2012年考研数二第10题解析”2012年考研数二第09题解析
题目
设 $y=y(x)$ 是由方程 $x^{2}-y+1=e^{y}$ 所确定的隐函数,则 $\frac{d^{2}y}{dx^{2}}|_{x=0} = ?$
继续阅读“2012年考研数二第09题解析”2012年考研数二第08题解析
题目
设 $A$ 为三阶矩阵,$P$ 为三阶可逆矩阵,且 $P^{-1}AP=\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 2
\end{pmatrix}$. 若 $P=(\alpha_{1}, \alpha_{2}, \alpha_{3})$, $Q=(\alpha_{1} + \alpha_{2}, \alpha_{2}, \alpha_{3})$. 则 $Q^{-1}AQ=?$
$$
A. \begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 1
\end{pmatrix}
$$
$$
B. \begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 2
\end{pmatrix}
$$
$$
C. \begin{pmatrix}
2 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 2
\end{pmatrix}
$$
$$
D. \begin{pmatrix}
2 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 1
\end{pmatrix}
$$
2012年考研数二第07题解析
题目
设 $\alpha_{1} = \begin{pmatrix}
0\\
0\\
c_{1}
\end{pmatrix}$, $\alpha_{2} = \begin{pmatrix}
0\\
1\\
c_{2}
\end{pmatrix}$, $\alpha_{3} = \begin{pmatrix}
1\\
-1\\
c_{3}
\end{pmatrix}$, $\alpha_{4} = \begin{pmatrix}
-1\\
1\\
c_{4}
\end{pmatrix}$, 其中 $c_{1}$, $c_{2}$, $c_{3}$, $c_{4}$ 为任意常数,则下列向量组中线性相关的是 $?$
$$
A. \alpha_{1}, \alpha_{2}, \alpha_{3}
$$
$$
B. \alpha_{1}, \alpha_{2}, \alpha_{4}
$$
$$
C. \alpha_{1}, \alpha_{3}, \alpha_{4}
$$
$$
D. \alpha_{2}, \alpha_{3}, \alpha_{4}
$$
2012年考研数二第06题解析
题目
设区域 $D$ 由曲线 $y=\sin x$, $x= \pm \frac{\pi}{2}$, $y=1$ 围成,则 $\iint_{D} (xy^{5} – 1) dxdy=?$
$$
A. \pi
$$
$$
B. 2
$$
$$
C. -2
$$
$$
D. -\pi
$$
2012年考研数二第05题解析
题目
设函数 $f(x,y)$ 可微,且对于任意 $x,y$ 都有 $\frac{\partial f(x,y)}{\partial x}>0$, $\frac{\partial f(x,y)}{\partial y}<0$, 则使不等式 $f(x_{1}, y_{1})<f(x_{2}, y_{2})$ 成立的一个充分条件是 $?$
$$
A. x_{1} > x_{2}, y_{1} < y_{2}
$$
$$
B. x_{1} > x_{2}, y_{1} > y_{2}
$$
$$
C. x_{1} < x_{2}, y_{1} < y_{2}
$$
$$
D. x_{1} < x_{2}, y_{1} > y_{2}
$$
2012年考研数二第04题解析
题目
设 $I_{k} = \int_{0}^{k \pi} e^{x^{2}} \sin x dx$ $(k=1,2,3)$, 则有 $?$
$$
A. I_{1} < I_{2} < I_{3}
$$
$$
B. I_{3} < I_{2} < I_{1}
$$
$$
C. I_{2} < I_{3} < I_{1}
$$
$$
D. I_{2} < I_{1} < I_{3}
$$
[高数]比较两个元素大小的两种方法
2012年考研数二第03题解析
题目
设 $a_{n}>0$ $(n=1,2,…)$, $S_{n}=a_{1} + a_{2} + \cdot \cdot \cdot + a_{n}$, 则数列 $\{S_{n}\}$ 有界是数列 $\{a_{n}\}$ 收敛的 $?$
$$
A. 充分必要条件
$$
$$
B. 充分非必要条件
$$
$$
C. 必要非充分条件
$$
$$
D. 既非充分也非必要条件
$$
[高数]收敛数列与发散数列
前言
数列的收敛与发散问题和函数的极限问题有相似之处,但是,由于数列的离散性,因此,数列的收敛与发散又有着一些特殊的性质。【荒原之梦】通过检索发现,互联网上关于此类问题存在一些错误的分析与结论,存在相当程度的误导性。为了使互联网上多一些理性的分析,本文将简要探讨一下收敛数列与发散数列的若干性质并对这些性质给出一定的解释。
继续阅读“[高数]收敛数列与发散数列”