一、题目
当 $n \rightarrow \infty$ 时,数列 $\left(1+\frac{1}{n}\right)^{n}-\mathrm{e}$ 是 $\frac{1}{n}$ 的等价无穷小吗?
难度评级:
继续阅读“披着数列极限外衣的函数无穷小问题:但是不能直接用等价无穷小公式哦”当 $n \rightarrow \infty$ 时,数列 $\left(1+\frac{1}{n}\right)^{n}-\mathrm{e}$ 是 $\frac{1}{n}$ 的等价无穷小吗?
难度评级:
继续阅读“披着数列极限外衣的函数无穷小问题:但是不能直接用等价无穷小公式哦”通过《等价无穷小公式合辑》这篇文章可知,当 $x \rightarrow 0$ 时,我们有很多等价无穷小公式可以选择。
但是,当 $x \rightarrow 1$ 时,我们也可以通过“变形”的方式使用等价无穷小公式。
继续阅读“只有当 x 趋于零的时候才能用等价无穷小代换吗?不,x 趋于 1 的时候也可以试试看”设 $x \rightarrow a$ 时 $f(x)$ 与 $g(x)$ 分别是 $x-a$ 的 $n$ 阶与 $m$ 阶无穷小, 则下列命题:
$(1)$ $f(x) g(x)$ 是 $x-a$ 的 $n+m$ 阶无穷小.
$(2)$ 若 $n>m$, 则 $\frac{f(x)}{g(x)}$ 是 $x-a$ 的 $n-m$ 阶无穷小.
$(3)$ 若 $n \leqslant m$, 则 $f(x)+g(x)$ 是 $x-a$ 的 $n$ 阶无穷小.
$(4)$ 若 $f(x)$ 连续, 则 $\int_{a}^{x} f(t) \mathrm{d} t$ 是 $x-a$ 的 $n+1$ 阶无穷小.
$(5)$ 当 $n \geqslant 2$ 时,$f^{\prime}(x)$ 是 $x – a$ 的 $n-1$ 阶无穷小.
中, 正确的是哪几个?
难度评级:
继续阅读“乘、除、加、积分、求导对无穷小阶数的影响”当 $x \rightarrow 0$ 时,下列无穷小量中最高阶的是哪个?
A. $(1+x)^{x^{2}}-1$
B. $e^{x^{4}-2 x}-1$
C. $\int_{0}^{x^{2}} \sin t^{2} \mathrm{~ d} t$
D. $\sqrt{1+2 x}-\sqrt[3]{1+3 x}$
难度评级:
继续阅读“这有一道求解无穷小阶数的经典题目”已知 $f(x, y)=\left\{\begin{array}{cc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.$ 则:
$$
f_{x y}^{\prime \prime}(0,0)=?
$$
$$
f_{y x}^{\prime \prime}(0,0)=?
$$
难度评级:
继续阅读“这个二元函数一点处的导数你会求解吗?”$$
I = \int_{0}^{+\infty} \frac{x \mathrm{e}^{-x}}{\left(1+\mathrm{e}^{-x}\right)^{2}} \mathrm{~d} x = ?
$$
难度评级:
继续阅读“你能走出这个关于 $e^{x}$ 的迷宫吗?”下面四个命题哪个是错误的:
(1) 数列极限 $\lim \limits_{n \rightarrow \infty} x_{n}=a$ $\Leftrightarrow$ $\lim \limits_{n \rightarrow \infty} x_{n+l}=a$. 其中 $l$ 为某个确定的正整数.
(2) 数列 $\left\{x_{n}\right\}$ 收敛 (即存在极限 $\lim \limits_{n \rightarrow \infty} x_{n}$ ), 则 $x_{n}$ 有界.
(3) 数列极限 $\lim \limits_{n \rightarrow \infty} x_{n}$ 存在 $\Leftrightarrow$ $\lim \limits_{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=1$.
(4) 数列 $\lim \limits_{n \rightarrow \infty} x_{n}=a$ $\Leftrightarrow$ $\lim \limits_{n \rightarrow \infty} x_{2 n-1}$ $=$ $\lim \limits_{n \rightarrow \infty} x_{2 n}=a$.
难度评级:
继续阅读“你能看出来下面关于数列极限的四个命题哪个是错误的吗?”你知道对于数列 $x_{n}$ 而言,$\lim_{x \rightarrow \infty} \frac{x_{n+1}}{x_{n}}$ 蕴含着多少知识吗?
继续往下看,会让你对数列极限的理解更上一层楼。
继续阅读“关于数列极限比值的那些事”在考研数学中,有些题目可以使用配方法对原式进行恒等变形,从而挖掘出解题的隐含条件——用好配方法,可以大大加快解题速度。
在本文中,荒原之梦网(zhaokaifeng.com)将用简单有效的表述阐述清楚什么是配方法,以及如何使用配方法。
难度评级:
继续阅读“挖掘题目隐含条件的利器:配方法”已知 $f(x)$ 一阶可导, $f(x)>0$, $f^{\prime}(x)>0$, 则当 $\Delta x>0$ 时,$\int_{x}^{x + \Delta x} f(t) \mathrm{d} t$, $f(x) \Delta x$ 和 $0$ 的大小关系如何?
难度评级:
继续阅读“这个不等式反映了积分的本质原理”已知 $f(x)=\left\{\begin{array}{cc}\sin \frac{1}{x}, & x \neq 0 \\ 1, & x=0\end{array}, F(x)=\int_{-1}^{x} f(t) \mathrm{d} t\right.$, 则 $F(x)$ 在 $(-1,1)$ 区间上具有什么特征?
难度评级:
继续阅读“有界震荡间断点处是可积的”已知 $F(x)$ 是 $f(x)$ 在 $(a, b)$ 上的一个原函数, 则据此能得出 $f(x)+F(x)$ 在 $(a, b)$ 内的哪些性质?
难度评级:
继续阅读“原函数和导数之间的那些性质都在这道题里了”