披着数列极限外衣的函数无穷小问题:但是不能直接用等价无穷小公式哦

一、题目题目 - 荒原之梦

当 $n \rightarrow \infty$ 时,数列 $\left(1+\frac{1}{n}\right)^{n}-\mathrm{e}$ 是 $\frac{1}{n}$ 的等价无穷小吗?

难度评级:

继续阅读“披着数列极限外衣的函数无穷小问题:但是不能直接用等价无穷小公式哦”

只有当 x 趋于零的时候才能用等价无穷小代换吗?不,x 趋于 1 的时候也可以试试看

一、前言 前言 - 荒原之梦

通过《等价无穷小公式合辑》这篇文章可知,当 $x \rightarrow 0$ 时,我们有很多等价无穷小公式可以选择。

但是,当 $x \rightarrow 1$ 时,我们也可以通过“变形”的方式使用等价无穷小公式。

继续阅读“只有当 x 趋于零的时候才能用等价无穷小代换吗?不,x 趋于 1 的时候也可以试试看”

乘、除、加、积分、求导对无穷小阶数的影响

一、题目题目 - 荒原之梦

设 $x \rightarrow a$ 时 $f(x)$ 与 $g(x)$ 分别是 $x-a$ 的 $n$ 阶与 $m$ 阶无穷小, 则下列命题:

$(1)$ $f(x) g(x)$ 是 $x-a$ 的 $n+m$ 阶无穷小.

$(2)$ 若 $n>m$, 则 $\frac{f(x)}{g(x)}$ 是 $x-a$ 的 $n-m$ 阶无穷小.

$(3)$ 若 $n \leqslant m$, 则 $f(x)+g(x)$ 是 $x-a$ 的 $n$ 阶无穷小.

$(4)$ 若 $f(x)$ 连续, 则 $\int_{a}^{x} f(t) \mathrm{d} t$ 是 $x-a$ 的 $n+1$ 阶无穷小.

$(5)$ 当 $n \geqslant 2$ 时,$f^{\prime}(x)$ 是 $x – a$ 的 $n-1$ 阶无穷小.

中, 正确的是哪几个?

难度评级:

继续阅读“乘、除、加、积分、求导对无穷小阶数的影响”

这个二元函数一点处的导数你会求解吗?

一、题目题目 - 荒原之梦

已知 $f(x, y)=\left\{\begin{array}{cc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.$ 则:

$$
f_{x y}^{\prime \prime}(0,0)=?
$$

$$
f_{y x}^{\prime \prime}(0,0)=?
$$

难度评级:

继续阅读“这个二元函数一点处的导数你会求解吗?”

你能看出来下面关于数列极限的四个命题哪个是错误的吗?

一、题目题目 - 荒原之梦

下面四个命题哪个是错误的:

(1) 数列极限 $\lim \limits_{n \rightarrow \infty} x_{n}=a$ $\Leftrightarrow$ $\lim \limits_{n \rightarrow \infty} x_{n+l}=a$. 其中 $l$ 为某个确定的正整数.

(2) 数列 $\left\{x_{n}\right\}$ 收敛 (即存在极限 $\lim \limits_{n \rightarrow \infty} x_{n}$ ), 则 $x_{n}$ 有界.

(3) 数列极限 $\lim \limits_{n \rightarrow \infty} x_{n}$ 存在 $\Leftrightarrow$ $\lim \limits_{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=1$.

(4) 数列 $\lim \limits_{n \rightarrow \infty} x_{n}=a$ $\Leftrightarrow$ $\lim \limits_{n \rightarrow \infty} x_{2 n-1}$ $=$ $\lim \limits_{n \rightarrow \infty} x_{2 n}=a$.

难度评级:

继续阅读“你能看出来下面关于数列极限的四个命题哪个是错误的吗?”

挖掘题目隐含条件的利器:配方法

一、前言 前言 - 荒原之梦

在考研数学中,有些题目可以使用配方法对原式进行恒等变形,从而挖掘出解题的隐含条件——用好配方法,可以大大加快解题速度。

在本文中,荒原之梦网(zhaokaifeng.com)将用简单有效的表述阐述清楚什么是配方法,以及如何使用配方法。

难度评级:

继续阅读“挖掘题目隐含条件的利器:配方法”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress