一、前言
我们知道,对不定积分的计算结果都要加上一个常数 $C$, 例如:
$$
\int f(x) \mathrm{~d} x = Z(x) + C
$$
也就是说,无论是 $Z(x) + 1$, $Z(x) + 2$, 还是 $Z(x) + 100$ 都是不定积分 $\int f(x) \mathrm{~d} x$ 的计算结果.
那么,是否存在一些不定积分,其结果可以表示为两个不同的函数,并且这两个函数之间并不是相差一个常数的关系呢?
在本文中,「荒原之梦考研数学」将通过两个例子,来讨论一下这一问题.
继续阅读“同一个不定积分的不同计算结果真的只相差任意常数吗?”