题目
设函数 $f(x)=$ $\frac{x}{1+x}$, $x \in [0,1]$, 定义数列:
$$
f_{1}(x) = f(x),
$$
$$
f_{2}(x) = f[f_{1}(x)],
$$
$$
\cdot \cdot \cdot,
$$
$$
f_{n}(x) = f[f_{n-1}(x)],
$$
$$
\cdot \cdot \cdot
$$
记 $S_{n}$ 是曲线 $y=f_{n}(x)$, 直线 $x=1$ 及 $x$ 轴所围平面图形的面积,求极限 $\lim_{n \rightarrow \infty} n S_{n}$.
解析
由题知:
$$
f_{1}(x) = \frac{x}{1+x};
$$
$$
f_{2}(x) = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x};
$$
$$
f_{3}(x) = \frac{\frac{x}{1+2x}}{1+\frac{x}{1+2x}} = \frac{x}{1+3x}.
$$
于是,由数学归纳法可知:
$$
f_{n}(x) = \frac{x}{1+nx}.
$$
又:
$$
f_{n}(0) = \frac{0}{1+0} = 0.
$$
于是:
$$
S_{n} = \int_{0}^{1} \frac{x}{1+nx} \Rightarrow
$$
$$
\lim_{n \rightarrow \infty} n S_{n} =
$$
$$
\lim_{n \rightarrow \infty} n \int_{0}^{1} \frac{x}{1+nx}.
$$
又,当 $n \rightarrow \infty$ 时,$1+nx \rightarrow nx$, 于是:
$$
\lim_{n \rightarrow \infty} n \int_{0}^{1} \frac{x}{1+nx} =
$$
$$
\lim_{n \rightarrow \infty} n \int_{0}^{1} \frac{x}{nx} =
$$
$$
\lim_{n \rightarrow \infty} \int_{0}^{1} \frac{nx}{nx} = 1.
$$