2014年考研数二第20题解析:极限、数列、数学归纳法

题目

设函数 $f(x)=$ $\frac{x}{1+x}$, $x \in [0,1]$, 定义数列:

$$
f_{1}(x) = f(x),
$$

$$
f_{2}(x) = f[f_{1}(x)],
$$

$$
\cdot \cdot \cdot,
$$

$$
f_{n}(x) = f[f_{n-1}(x)],
$$

$$
\cdot \cdot \cdot
$$

记 $S_{n}$ 是曲线 $y=f_{n}(x)$, 直线 $x=1$ 及 $x$ 轴所围平面图形的面积,求极限 $\lim_{n \rightarrow \infty} n S_{n}$.

解析

由题知:

$$
f_{1}(x) = \frac{x}{1+x};
$$

$$
f_{2}(x) = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x};
$$

$$
f_{3}(x) = \frac{\frac{x}{1+2x}}{1+\frac{x}{1+2x}} = \frac{x}{1+3x}.
$$

于是,由数学归纳法可知:

$$
f_{n}(x) = \frac{x}{1+nx}.
$$

又:

$$
f_{n}(0) = \frac{0}{1+0} = 0.
$$

于是:

$$
S_{n} = \int_{0}^{1} \frac{x}{1+nx} \Rightarrow
$$

$$
\lim_{n \rightarrow \infty} n S_{n} =
$$

$$
\lim_{n \rightarrow \infty} n \int_{0}^{1} \frac{x}{1+nx}.
$$

又,当 $n \rightarrow \infty$ 时,$1+nx \rightarrow nx$, 于是:

$$
\lim_{n \rightarrow \infty} n \int_{0}^{1} \frac{x}{1+nx} =
$$

$$
\lim_{n \rightarrow \infty} n \int_{0}^{1} \frac{x}{nx} =
$$

$$
\lim_{n \rightarrow \infty} \int_{0}^{1} \frac{nx}{nx} = 1.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress