题目
设曲线 $L$ 的方程为 $y=\frac{1}{4} x^{2} – \frac{1}{2} \ln x$ $(1 \leqslant x \leqslant e)$.
$(Ⅰ)$ 求 $L$ 的弧长;
$(Ⅱ)$ 设 $D$ 是由曲线 $L$, 直线 $x=1$, $x=e$ 及 $x$ 轴所围平面图形,求 $D$ 的形心的横坐标.
解析
第 $(Ⅰ)$ 问
结合题目,根据平面曲线的弧长计算公式,可得:
$$
L = \int_{1}^{e} \sqrt{1+(y^{‘})^{2}} dx.
$$
又:
$$
y^{‘} = \frac{1}{2} x – \frac{1}{2x} = \frac{x^{2}-1}{2x}.
$$
$$
1 + (y^{‘})^{2} = 1 + (\frac{x^{2}-1}{2x})^{2} \Rightarrow
$$
$$
1 + (y^{‘})^{2} = \frac{4x^{2} + (x^{2}-1)^{2}}{4x^{2}} \Rightarrow
$$
$$
1 + (y^{‘})^{2} = \frac{x^{4} + 2x^{2} + 1}{4x^{2}} \Rightarrow
$$
$$
1 + (y^{‘})^{2} = \frac{(x^{2}+1)^{2}}{4x^{2}}.
$$
于是:
$$
L = \int_{1}^{e} \sqrt{1+(y^{‘})^{2}} dx \Rightarrow
$$
$$
L = \int_{1}^{e} \sqrt{\frac{(x^{2}+1)^{2}}{4x^{2}}} dx \Rightarrow
$$
$$
L = \int_{1}^{e} \frac{x^{2} + 1}{2x} dx \Rightarrow
$$
$$
L = \frac{1}{2} \int_{1}^{e} (x + \frac{1}{x}) dx \Rightarrow
$$
$$
L = \frac{1}{2}[\frac{1}{2} x^{2} + \ln x]|_{1}^{e} \Rightarrow
$$
$$
L = \frac{1}{4} e^{2} + \frac{1}{4} = \frac{e^{2}+1}{4}.
$$
第 $(Ⅱ)$ 问
设区域 $D$ 形心的横坐标为 $\overline{x}$, 则:
$$
\overline{x} = \frac{\iint_{D} x dx dy}{\iint_{D} dx dy} \Rightarrow
$$
$$
\overline{x} = \frac{\int_{1}^{e} x dx \int_{0}^{\frac{x^{2}}{4}-\frac{1}{2} \ln x} dy}{\int_{1}^{e} dx \int_{0}^{\frac{x^{2}}{4}-\frac{1}{2} \ln x} dy}.
$$
其中:
$$
\int_{0}^{\frac{x^{2}}{4}-\frac{1}{2} \ln x} dy = (\frac{x^{2}}{4} – \frac{1}{2} \ln x) + C.
$$
于是:
$$
\overline{x} = \frac{\int_{1}^{e} x (\frac{x^{2}}{4} – \frac{1}{2} \ln x) dx}{\int_{1}^{e} (\frac{x^{2}}{4} – \frac{1}{2} \ln x) dx} \Rightarrow
$$
$$
\overline{x} = \frac{\int_{1}^{e} (\frac{x^{3}}{4} – \frac{1}{2} x \ln x) dx}{\int_{1}^{e} (\frac{x^{2}}{4} – \frac{1}{2} \ln x) dx} \Rightarrow
$$
$$
\overline{x} = \frac{\frac{1}{4} \int_{1}^{e} x^{3} dx – \frac{1}{2} \int_{1}^{e} x \ln x dx}{\frac{1}{4} \int_{1}^{e} x^{2} dx – \frac{1}{2} \int_{1}^{e} \ln x dx}.
$$
注:
[1]. $x \ln x$ 的原函数是 $\frac{1}{2} x^{2} \ln x – \frac{1}{4} x^{2} + C$, 推演过程可以参考:《$x \ln x$ 的原函数是多少?》;
[2]. $\ln x$ 的原函数是 $x \ln x – x + C$, 推演过程可以参考:《$\ln x$ 的原函数是多少?》.
其中:
$$
\frac{1}{4} \int_{1}^{e} x^{3} dx – \frac{1}{2} \int_{1}^{e} x \ln x dx =
$$
$$
\frac{1}{4} \cdot \frac{1}{4} x^{4}|_{1}^{e} – \frac{1}{2} \cdot \frac{1}{2} x^{2} \ln x |_{1}^{e} + \frac{1}{2} \cdot \frac{1}{4} x^{2} |_{1}^{e} =
$$
$$
\frac{e^{4} – 1}{16} – \frac{e^{2}}{4} + \frac{e^{2}-1}{8} =
$$
$$
\frac{e^{4} – 2e^{2} -3}{16}.
$$
$$
\frac{1}{4} \int_{1}^{e} x^{2} dx – \frac{1}{2} \int_{1}^{e} \ln x dx =
$$
$$
\frac{1}{4} \cdot \frac{1}{3} x^{3} |_{1}^{e} – \frac{1}{2} x \ln x |_{1}^{e} + \frac{1}{2} x|_{1}^{e} =
$$
$$
\frac{e^{3}-1}{12} – \frac{e}{2} + \frac{e-1}{2} =
$$
$$
\frac{e^{3}-7}{12}.
$$
综上可知:
$$
\overline{x} = \frac{e^{4} – 2e^{2} -3}{16} \cdot \frac{12}{e^{3}-7} \Rightarrow
$$
$$
\overline{x} = \frac{3(e^{4} – 2e^{2} – 3)}{4(e^{3}-7)}.
$$