题目
设 $f(x)$ 是周期为 $4$ 的可导奇函数,且 $f^{‘}(x) = 2(x-1)$, $x \in [0,2]$, 则 $f(7) = ?$
解析
由于:
$$
f^{‘}(x) = 2(x-1) = 2x – 2.
$$
于是:
$$
f(x) = x^{2} – 2x + C.
$$
又:
$$
f(0) = 0.
$$
于是:
$$
C=0 \Rightarrow
$$
$$
f(x) = x^{2} – 2x.
$$
又:
$$
7 = (-1) + 4 \times 2.
$$
故:
$$
f(7) = f(-1).
$$
又:
$$
f(-1) = – f(1).
$$
故:
$$
f(7) = – f(1) =
$$
$$
-(1-2) = -(-1) = 1.
$$
综上可知,正确答案为 $1$.
EOF