2018 年研究生入学考试数学一填空题第 1 题解析

题目

[latex]\lim_{x \rightarrow 0}(\frac{1-\tan x}{1+\tan x})^{\frac{1}{\sin kx}}=e[/latex], 则 [latex]k=[/latex]__.

解析

观察本题可以发现,这是一个求极限的式子,而且等式的右边是 [latex]e[/latex], 符合“两个重要极限”中的第二个重要极限的一部分特征。

两个重要极限如下:

[latex]\lim_{x \rightarrow x_{x_{0}}}\frac{\sin x}{x}=1,\lim_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\lim_{x \rightarrow \infty}(1+\frac{1}{x})^{x}=e.[/latex]

由于题目中的式子不存在上述公式中的 [latex]1[/latex], 因此,我们需要构造出这个 [latex]1[/latex], 即:

[latex]1+\square=\frac{1-\tan x}{1+\tan x }\Rightarrow \square = \frac{1-\tan x}{1+\tan x }-1=\frac{1-\tan x}{1+\tan x }-\frac{1+\tan x}{1+\tan x}=\frac{-2 \tan x}{1+\tan x}.[/latex]

于是,原式= [latex]\lim_{x \rightarrow 0}(1+\frac{-2\tan x}{1+\tan x})^{\frac{1}{\sin kx}}=e. (1)[/latex]

由于当 [latex]x \rightarrow 0[/latex] 时,[latex]\frac{-2\tan x}{1+\tan x} \rightarrow 0[/latex] 且 [latex]\frac{1}{\sin kx} \rightarrow \infty[/latex], 所以,符合使用“两个重要极限”的条件,可以继续接下来的计算。

Figure 1. 正切函数图像,使用 www.desmos.com 制作

接下来继续向公式的方向构造等式。

[latex](1) = \lim_{x \rightarrow 0}(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x}\frac{-2\tan x}{1+\tan x}\frac{1}{\sin kx}} (2)[/latex]

根据公式,我们知道:

[latex]\lim_{x \rightarrow 0}(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x}}=e.[/latex]

于是:

[latex](2)=e^{\lim_{x \rightarrow 0}\frac{-2\tan x}{1+\tan x}\frac{1}{\sin kx}}=e^{\lim_{x \rightarrow 0}\frac{-2\tan x}{(1+\tan x)\sin kx}} (3)[/latex]

当 [latex]x \rightarrow 0[/latex] 时,[latex]\tan x \rightarrow 0[/latex] 是不可以带入原式中的(只有非零和非无穷的数值可以带入原式中。),不过当 [latex]x \rightarrow 0[/latex] 时,[latex](1+\tan x) \rightarrow 1[/latex] 是可以带入原式中的,于是:

[latex]\lim_{x \rightarrow 0}\frac{-2\tan x}{(1+\tan x)\sin kx}=\lim_{x \rightarrow 0}\frac{-2\tan x}{\sin kx}.[/latex]

又因为当 [latex]x \rightarrow 0[/latex] 时,[latex]\sin x \sim \tan x \sim x[/latex], 于是:

[latex]\lim_{x \rightarrow 0}\frac{-2\tan x}{\sin kx}=\lim_{x \rightarrow 0}\frac{-2x}{kx}=-\frac{2}{k}.[/latex]

即:

[latex]e^{-\frac{2}{k}}=e \Rightarrow -\frac{2}{k}=1 \Rightarrow k=-2.[/latex]

综上可知,正确答案是:[latex]-2[/latex]

EOF