为什么震荡时没有“无穷大”:因为破坏了无穷大趋于路径的唯一性和单向性

一般情况下,对于下面这些量是无穷大量,我们应该是没有疑问的:

limx0+lnxlimx0+1xlimx+xlimx+lnxlimx+x2limx+ex

但是,对于下面这些量是否是无穷大量,我们可能会有一些疑问,在本文中,荒原之梦考研数学将帮助大家解决这些疑问:

limx0(1x2sin1x)?limn(1)n(n)?

我们知道,震荡无极限可以分为有界震荡无极限和无界震荡无极限。虽然无穷大量不是极限值,但是一般情况,“震荡”就意味着“不存在”无穷大,或者说不【趋于】无穷大——

这是因为,说一个量是无穷大量,必须要满足的首要条件就是,在某个位置之后,所有的数值都是非常非常大的数字,不能出现常数。

对于 1x2sin1x, 当 x0 的时候,1x2 会趋于无穷大,但是,sin1x 则会在 10 以及 01 之间不断做有界震荡,因此,1x2sin1x 的取值除了会有产生无穷大的情况,也会存在等于 0 的情况(零乘以无穷大仍得零)。

因此,当 x0 的时候,1x2sin1x 其实是无界震荡且非无穷大量,其函数图像如图 01 所示:

为什么震荡时没有“无穷大” | 荒原之梦考研数学 | 图 01.
图 01. y = 1x2sin1x 的函数图像示意图.

既然取值中有常数(非无穷大量)就不算无穷大量,那么,如果取值只在趋于正无穷和趋于负无穷两个方向上进行,又是否算是无穷大量呢?

虽然说,无论正无穷大还是负无穷大都可以称为“无穷大”,但上面一段所说的这种情况,也不能算是无穷大量。

因为无穷大事实上是要“趋于”的,而“趋于”就意味着在整个过程中,取值的“总体方向”不能发生变化,只能有一个“方向”——

“方向唯一且不能发生变化”不仅要求取值方向上不能出现常数,也要求不能出现相反方向的无穷大量。

例如,对于数列 {xn} = (1)n(n), 当 n = 1, 2, 3. 时,xn 的取值为:

xn=1,2,3,4,5,

从上面的式子,我们可以看出,数列 {xn} 的取值其实是在两个方向上反复变化的,一个方向上趋于 +, 另一个方向上趋于 , 此时,我们只能说数列 {xn} 是一个无界数列,而不能说当 x 时,数列 {xn} 是一个无穷大量。

数列 {xn} 的取值示意图如图 02 所示:

为什么震荡时没有“无穷大” | 荒原之梦考研数学 | 图 02.
图 02.

如果要用图示的方式阐明荒原之梦考研数学的这篇笔记,那就是,只有如图 02 的这种形式算是趋向于无穷大量,而如图 03 和如图 04 所示的形式都不能算是趋向于无穷大量:

为什么震荡时没有“无穷大” | 荒原之梦考研数学 | 图 03.
图 03.
为什么震荡时没有“无穷大” | 荒原之梦考研数学 | 图 04.
图 04.
为什么震荡时没有“无穷大” | 荒原之梦考研数学 | 图 05.
图 05.

总的来说,如果要趋于无穷大,就必须保证无穷大趋于路径的唯一性和单向性。由于无论是“震荡”(如上图 02)。还是同时趋于正无穷和负无穷(如上图 03),都破坏了趋于无穷大路径的唯一性和单向性,因此,下面这两个式子都不趋于无穷大:

limx0(1x2sin1x)limn(1)n(n)


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress