一、题目
若函数 $f(x)$ 具有任意阶导数,且 $f^{\prime}(x)$ $=$ $f^{2}(x)$, 则当 $n$ 为大于等于 $2$ 的正整数时,$f(x)$ 的 $n$ 阶导数 $f^{(n)}(x)$ $=$ $?$
»A« $n! f^{2n}(x)$
»B« $n! f^{n+1}(x)$
»C« $n f^{2n}(x)$
»D« $n f^{n+1}(x)$
若函数 $f(x)$ 具有任意阶导数,且 $f^{\prime}(x)$ $=$ $f^{2}(x)$, 则当 $n$ 为大于等于 $2$ 的正整数时,$f(x)$ 的 $n$ 阶导数 $f^{(n)}(x)$ $=$ $?$
»A« $n! f^{2n}(x)$
»B« $n! f^{n+1}(x)$
»C« $n f^{2n}(x)$
»D« $n f^{n+1}(x)$
$$
\begin{aligned}
I_{1} & = \int_{0}^{\infty} \mathrm{e}^{- \alpha x} \cdot \textcolor{lightgreen}{\cos} \left( \beta x \right) \mathrm{~d} x = ? \\ \\
I_{2} & = \int_{0}^{\infty} \mathrm{e}^{- \alpha x} \cdot \textcolor{pink}{\sin} \left( \beta x \right) \mathrm{~d} x = ?
\end{aligned}
$$
其中,$\alpha > 0$.
继续阅读“对含有 $\sin$ 或 $\cos$ 的被积函数做分部积分一般要做两次”在「荒原之梦考研数学」的文章《取大头:分子或分母中的加减法所连接的部分可以使用“取大头”算法》中,我们主要讨论了当 $x \rightarrow +\infty$, 且 $x^{n}$ 中的 $n$ 为正整数的时候,极限式子“取大头去小头”的定理,在本文中,我们将对极限式子的“取大头去小头”的定理进行扩展,助力同学们提升解题速度。
继续阅读“扩展的极限“抓大去小”定理”$$
\lim_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k}{(k+1)!} = ?
$$
难度评级:
继续阅读“相邻展开式可抵消一般发生在含有递进关系的求和中”一般情况下,我们判断方程实数根的存在性或者函数实数解的存在性(也就是函数图像与 $X$ 轴是否存在交点,以及交点的个数)通常使用的方法是求导法,也就是通过求导判断函数的单调性,再利用函数的极值,判断函数图像与 $X$ 轴是否存在交点。
在本文中,「荒原之梦考研数学」将通过原创的“峰式”变限积分法,来判断方程实数根(或函数实数解)的存在性,为同学们在求解该类型题目时提供另一种解题思路。
继续阅读““峰式”变限积分法:判断方程实数根(或函数实数解)存在性的另一种方法”下面的极限中,结论正确的是哪个?
»A« $\lim_{ x \rightarrow 0 } \left( 1 + \frac{1}{x} \right)^{x}$ $=$ $\mathrm{e}$
»B« $\lim_{ x \rightarrow 0^{+} } \left( 1 + \frac{1}{x} \right)^{x}$ $=$ $1$
»C« $\lim_{ x \rightarrow \infty } \left( 1 + \frac{1}{x} \right)^{-x}$ $=$ $\mathrm{e}$
»D« $\lim_{ x \rightarrow \infty } \left( 1 – \frac{1}{x} \right)^{x}$ $=$ $-\mathrm{e}$
难度评级:
继续阅读“这个极限非常具有“迷惑力”!”已知 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$, 并且 $K \neq 0$, 则当 $n$ 充分大时,下列结论中一定正确的是哪个?
⟨A⟩» $A_{n}$ $<$ $K + \frac{1}{n}$
⟨B⟩» $A_{n}$ $>$ $K – \frac{1}{n}$
⟨C⟩» $\left| A_{n} \right|$ $>$ $\frac{|K|}{2}$
⟨D⟩» $\left| A_{n} \right|$ $<$ $\frac{|K|}{2}$
难度评级:
无 穷 小 量不可数,例如,当 $x \rightarrow \infty$ 的时候,$\frac{1}{x}$, $\frac{2}{x}$, $\frac{9999999}{x}$ 都是无穷小量,我们也可以将无穷小理解为“无限小”;
有 限 小 量可数,例如,无论是 $\frac{1}{2}$, $\frac{1}{100}$, 还是 $\frac{1}{9999999}$, 虽然在某些程度上都是很小的数字,但他们都是可数的,都是一个确定的量。
加上或者减去一个 无 穷 小 量不会对原有的数值产生影响:
$$
\textcolor{brown}{\colorbox{yellow}{ 1 }} + \textcolor{pink}{ \lim_{x \to \infty} \frac{1}{x} } = 1 + \textcolor{pink}{ 0 } \textcolor{springgreen}{ = 1 }
$$
加上或者减去一个 有 限 小 量会对原有的数值产生影响:
$$
\textcolor{brown}{\colorbox{yellow}{ 1 }} + \frac{1}{9999999} = \frac{9999999 + 1}{9999999} = \frac{10000000}{9999999} \textcolor{orangered}{\neq 1}
$$
有了上面的知识之后,求解本题就很容易了。
首先可以看到,无论是让 $K$ 加上 $\frac{1}{n}$ 还是减去 $\frac{1}{n}$, 当 $n$ 充分大时,也就是当 $n \rightarrow \infty$ 时,都有:
$$
\lim_{n \to \infty} \frac{1}{n} = 0
$$
也就是说,当 $n \rightarrow \infty$ 时:
$$
K + \frac{1}{n} = K – \frac{1}{n} = K
$$
又由题目已知条件 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ 可知:
$$
\begin{aligned}
A_{n} & \textcolor{springgreen}{=} K + \frac{1}{n} \quad \textcolor{springgreen}{\boldsymbol{\checkmark}} \\ \\
A_{n} & \textcolor{springgreen}{=} K – \frac{1}{n} \quad \textcolor{springgreen}{\boldsymbol{\checkmark}}
\end{aligned}
$$
综上可知,C 选 项 正 确 。
我们也可以用反例法求解本题:
当 $n \rightarrow \infty$ 时,若令 $A_{n}$ $=$ $K + \frac{2}{n}$, 则也满足题目 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ 的条件,但此时:
$$
\begin{aligned}
& \left( A_{n} = K + \frac{2}{n} \right) > \left( K + \frac{1}{n} \right) \\ \\
\textcolor{springgreen}{\Rightarrow} \ & A_{n} > \left( K + \frac{1}{n} \right) \quad \textcolor{springgreen}{\boldsymbol{\checkmark}} \\ \\
\textcolor{orangered}{\nRightarrow} \ & \textcolor{red}{ \cancel{ \textcolor{white}{ A_{n} < \left( K + \frac{1}{n} \right) } } }
\end{aligned}
$$
类似的,当 $n \rightarrow \infty$ 时,若令 $A_{n}$ $=$ $K – \frac{2}{n}$, 则也满足题目 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ 的条件,但此时:
$$
\begin{aligned}
& \left( A_{n} = K – \frac{2}{n} \right) < \left( K – \frac{1}{n} \right) \\ \\ \textcolor{springgreen}{\Rightarrow} \ & A_{n} < \left( K – \frac{1}{n} \right) \quad \textcolor{springgreen}{\boldsymbol{\checkmark}} \\ \\ \textcolor{orangered}{\nRightarrow} \ & \textcolor{red}{ \cancel{ \textcolor{white}{ A_{n} > \left( K – \frac{1}{n} \right) } } }
\end{aligned}
$$
虽然我们不知道 $K$ 是一个正数还是一个负数,但是,由题目已知条件 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ $\neq$ $0$ 可知:
$$
\textcolor{orange}{
\lim_{n \rightarrow \infty} |A_{n}| = |K| > 0 } \tag{1}
$$
且:
$$
\frac{|K|}{2} > 0
$$
由于当 $n$ 足够大时,也就是 $n \rightarrow \infty$ 时,上面的 $\textcolor{orange}{(1)}$ 式一定成立,并且 $\frac{|K|}{2}$ 是一个可数的数值,所以下式一定成立:
$$
|K| > \frac{|K|}{2}
$$
即:
$$
\lim_{n \rightarrow \infty} |A_{n}| > \frac{|K|}{2}
$$
我们也可以用极限的定义求解本题:
由题目已知条件 $\lim_{n \rightarrow \infty} A_{n}$ $=$ $K$ $\neq$ $0$ 可知:
$$
\lim_{n \rightarrow \infty} |A_{n}| = |K| > 0
$$
于是,根据极限的定义可知,若令 $\xi = \frac{|K|}{2}$, 则一定存在正整数 $N$, 使得当 $n > N$ 时,有:
$$
\begin{aligned}
& \left( \textcolor{orange}{ \Big| |A_{n}| − |K| \Big| } \right) < \left( \textcolor{orange}{ \xi = \frac{∣K∣}{2} } \right) \\ \\
\Rightarrow \ & \Big| |A_{n}| − |K| \Big| < \frac{|K|}{2} \\ \\
\Rightarrow \ & \frac{-|K|}{2} < \left( \textcolor{pink}{ |A_{n}| − |K| } \right) < \frac{|K|}{2} \\ \\
\Rightarrow \ & \frac{|K|}{2} < |A_{n}| < \frac{3 |K|}{2} \\ \\
\Rightarrow \ & \textcolor{gray}{ |A_{n}| < |K| } \\ \\
\textcolor{springgreen}{\Rightarrow} \ & \frac{|K|}{2} < |A_{n}| < |K| \quad \textcolor{springgreen}{\boldsymbol{\checkmark}}
\end{aligned}
$$
事实上,若 $k$ $\in$ $(0, 1)$, $\xi$ $\in$ $(0, |K|)$ 按照上述方法,我们可以证明当 $n$ 足够大的时候,下式一定成立:
$$
\textcolor{yellow}{
|A_{n}| > k |K|
}
$$
综上可知,C 选 项 正 确 。
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
以独特的视角解析线性代数,让繁复的知识变得直观明了。
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
在解决含有无穷小量问题的时候,我们常常需要面对的问题就是:
什么时候该将无穷小量考虑进运算结果中?什么时候又该将无穷小量舍去?
在本文中,「荒原之梦考研数学」就借助“小泡泡转为大泡泡”的现象,为同学们讲明白,如何通过让大的无穷小更大,让小的无穷小更小的“分化融合”方法,来明确无穷小量在具体计算过程中的取舍。
继续阅读“解决无穷小量取舍问题的一个思路:让小泡泡汇聚成大泡泡”已知,函数 $f(x)$ 在点 $x_{0}$ 处可导, $\left\{ \alpha_{n} \right\}$ 与 $\left\{\beta_{n} \right\}$ 是两个趋于 0 的正数列, 请求解下面的极限:
$$
I=\lim _{n \rightarrow \infty} \frac{f \left(x_{0} + \alpha_{n} \right) – f \left(x_{0} – \beta_{n} \right)}{\alpha_{n} + \beta_{n} }
$$
难度评级:
继续阅读“没说邻域内可导不能用洛必达法则”$$
\lim_{ n \rightarrow \infty } n \left[ \left( 1 + \frac{1}{n} \right)^{n} – \mathrm{e} \right] = ?
$$
难度评级:
继续阅读“证明无限趋于并不是等于的方法:放大无穷多倍”已知 $u$ $=$ $\frac{x+y}{2}$, $v$ $=$ $\frac{x-y}{2}$, $w$ $=$ $z \mathrm{e}^{y}$, 取 $u$, $v$ 为新自变量,$w$ $=$ $w(u, v)$ 为新函数,请将下面的方程变换为以 $u$ 和 $v$ 为自变量的表示形式:
$$
\frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2 } z}{\partial x \partial y} + \frac{\partial z}{\partial x} = z
$$
难度评级:
继续阅读“复合函数求偏导的两种理解方式”已知,函数 $f(x)$ 在闭区间 $[0, 1]$ 上连续,在开区间 $(0,1)$ 内可导,且:
$$
f(1)=k \int_0^{\frac{1}{k}} x \mathrm{e}^{1-x} f(x) \mathrm{~d} x
$$
其中常数 $k>1$.
请证明存在 $\xi \in(0,1)$, 使得下式成立:
$$
f^{\prime}(\xi)=\left(1-\frac{1}{\xi}\right) \cdot f(\xi)
$$
难度评级:
继续阅读“计算含有“表述环路”的式子,首先需要“打破环路””已知,函数 $f(x)$ 二阶可导,且 $f ^{\prime} (x)$ $=$ $f(n-x)$, $f(0)$ $=$ $1$, 则:
$$
f(x) = ?
$$
难度评级:
继续阅读“导数等于原函数的“平移”:这样的函数一般都由三角函数构成”$$
I = \int_{0}^{ \frac{\pi}{2}} \ln ( \sin x ) \mathrm{~d} x = ?
$$
难度评级:
继续阅读“明修栈道,暗度陈仓:化简对数函数先凑乘法”请求解下面式子的极限:
$$
\begin{aligned}
K_{1} & = \lim_{ x \rightarrow a } \frac{ a^{x} – x^{a}}{x-a} \\ \\
K_{2} & = \lim_{ x \rightarrow a } \frac{ x^{x} – a^{a} }{x-a} \\ \\
K_{3} & = \lim_{x \rightarrow a } \frac{\tan x – \tan a}{ x^{a} – a^{a} }
\end{aligned}
$$
难度评级:
继续阅读“利用导数的定义求解式子的极限”