一、题目
方程 $\left(y+\sqrt{x^{2}+y^{2}}\right) \mathrm{d} x-x \mathrm{~d} y=0$ 满足条件 $y(1)=0$ 的特解为
难度评级:
继续阅读“看上去像可分离变量的微分方程但“分不开”的时候,很可能就是齐次微分方程”方程 $\left(y+\sqrt{x^{2}+y^{2}}\right) \mathrm{d} x-x \mathrm{~d} y=0$ 满足条件 $y(1)=0$ 的特解为
难度评级:
继续阅读“看上去像可分离变量的微分方程但“分不开”的时候,很可能就是齐次微分方程”已知 $y_{1}=\cos 2 x-\frac{1}{4} x \cos 2 x$, $y_{2}=\sin 2 x-\frac{1}{4} x \cos 2 x$ 是某二阶线性常系数非齐次微分方程的两个解, $y_{3}=\cos 2 x$ 是它所对应的齐次方程的一个解,则该微分方程是?
难度评级:
继续阅读“如何根据微分方程的特解找出通解,进而还原这个微分方程?”$x y^{\prime \prime}=y^{\prime}+x \sin \frac{y^{\prime}}{x}$ 的通解是( )
难度评级:
继续阅读“遇到不能用公式的二阶微分方程怎么办:先尝试降为一阶微分方程”已知 $a>0$, 则:
$$
I=\int_{0}^{a} x^{3} \sqrt{\frac{x}{a-x}} \mathrm{~d} x=?
$$
难度评级:
继续阅读“被积函数中的根式中没有平方项不能用三角代换怎么办:整体代换”$$
I=\int_{1}^{+\infty}\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{1+x}\right] \mathrm{~d} x = ?
$$
难度评级:
继续阅读“在计算无穷限积分的时候,要注意应用极限的思想”$$
I=\int_{0}^{+\infty} \frac{\arctan x}{\left(1+x^{2}\right)^{5 / 2}} \mathrm{~d} x=?
$$
难度评级:
继续阅读“对于含有反三角函数的积分可以用对应的三角函数代换求解”已知 $C_{1}, C_{2}$ 是两个任意常数, 则函数 $y=C_{1} \mathrm{e}^{2 x}+C_{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}$ 满足的一个微分方程是:
(A) $y^{\prime \prime}+y^{\prime}-2 y=6 \mathrm{e}^{-x}$
(B) $y^{\prime \prime}-y^{\prime}-2 y=6 \mathrm{e}^{-x}$
(C) $y^{\prime \prime}+y^{\prime}-2 y=3 x \mathrm{e}^{-x}$
(D) $y^{\prime \prime}-y^{\prime}-2 y=3 x \mathrm{e}^{-x}$
难度评级:
继续阅读“如何通过通解还原微分方程?”已知方程 $y^{\prime \prime}+q y=0$ 存在当 $x \rightarrow+\infty$ 时趋于零的非零解, 则:
(A) $q>0$
(B) $q \geqslant 0$
(C) $q<0$
(D) $q \leqslant 0$
难度评级:
继续阅读“判断微分方程解的形式有时候需要分类讨论”由曲线 $y=\operatorname{ch} x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ 及三条直线 $x=-1$, $x=1$, $y=0$ 围成的曲边梯形绕 $Y$ 轴旋转一周而成的旋转体的体积等于多少?
难度评级:
继续阅读“求旋转体的体积,但是不会画函数图像怎么办?”若 $\int_{a}^{+\infty} f(x) \mathrm{d} x$ 收玫, 又 $\lim \limits_{x \rightarrow+\infty} x f(x)=l$, 则
(A) $l>0$
(B) $l=0$
(C) $l<0$
(D) 以上均不对
难度评级:
继续阅读“涉及抽象函数的题目可以优先尝试举特例”若 $a>0, f(x)$ 在 $[0, a]$ 上连续, 并且当 $0 \leqslant x \leqslant \frac{a}{2}$ 时 $f(x)+f(a-x)=0$, 则 $\int_{0}^{a} f(x) \mathrm{d} x$
(A) $>0$
(B) $<0$
(C) $=0$
(D) 不能确定符号
难度评级:
继续阅读“解题思路:把要求解的式子的形式往已知的形式上凑”曲线 $y=(x+2) \mathrm{e}^{\frac{-1}{x}}$
(A) 仅有水平渐近线
(B) 仅有铅直渐近线
(C) 既有铅直又有水平渐近线
(D) 既有铅直又有斜渐近线
难度评级:
继续阅读“对函数垂直渐近线的考察需要分「左右」两侧”曲线 $y=\ln x$ 上点的曲率具有性质:
(A) 最大值为 $\frac{2}{9} \sqrt{3}$
(B) 最小值为 $\frac{1}{8}$
(C) 最大值为 $\frac{1}{9} \sqrt{3}$
(D) 无最大值
难度评级:
继续阅读“带着根号求导找极值很复杂,可以先平方去根号后再求导”已知 $f(x)$ 在 $(-\infty,+\infty)$ 内可导, $x_{0} \neq 0,\left(x_{0}, f\left(x_{0}\right)\right)$ 是 $y=f(x)$ 的拐点, 则:
(A) $x_{0}$ 必是 $f^{\prime}(x)$ 的驻点
(B) $\left(-x_{0},-f\left(x_{0}\right)\right)$ 必是 $y=-f(-x)$ 的拐点
(C) $\left(-x_{0},-f\left(-x_{0}\right)\right)$ 必是 $y=-f(x)$ 的拐点
(D) 对任意 $x>x_{0}$ 与 $x<x_{0}, y=f(x)$ 的凹凸性相反
难度评级:
继续阅读“拐点不一定是驻点”