变量 $x$ 趋于零时的重要极限(01-B001)

问题

当 $x \rightarrow 0$ 时,$\frac{\sin x}{x}$ 的极限是多少?

选项

[A].   $\lim_{x \rightarrow 0}$ $\frac{\sin x}{x}$ $=$ $-1$

[B].   $\lim_{x \rightarrow 0}$ $\frac{\sin x}{x}$ $=$ $0$

[C].   $\lim_{x \rightarrow 0}$ $\frac{\sin x}{x}$ $=$ $1$

[D].   $\lim_{x \rightarrow 0}$ $\frac{\sin x}{x}$ $=$ $\infty$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\lim_{x \rightarrow 0}$ $\frac{\sin x}{x}$ $=$ $1$

数列极限存在的单调有界准则(B001)

问题

下面关于【数列极限存在的单调有界准则】中,正确的是哪个?

选项

[A].   单调有界数列不一定存在极限

[B].   有界数列必存在极限

[C].   单调数列必存在极限

[D].   单调有界数列必存在极限


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

单调有界数列必存在极限

函数极限存在的夹逼准则(B001)

问题

根据【夹逼准则】,若要使函数极限 $\lim_{x \rightarrow \square}$ $f(x)$ $=$ $A$ 存在,则需要满足下面哪个条件?

选项

[A].   $g(x)$ $\leqslant$ $f(x)$ $\leqslant$ $h(x)$ 且 $\lim_{x \rightarrow \square}$ $g(x)$ $=$ $\lim_{x \rightarrow \square}$ $h(x)$ $=$ $B$

[B].   $g(x)$ $\leqslant$ $f(x)$ $\geqslant$ $h(x)$ 且 $\lim_{x \rightarrow \square}$ $g(x)$ $=$ $\lim_{x \rightarrow \square}$ $h(x)$ $=$ $A$

[C].   $g(x)$ $\leqslant$ $f(x)$ $\leqslant$ $h(x)$ 且 $\lim_{x \rightarrow \square}$ $g(x)$ $=$ $\lim_{x \rightarrow \square}$ $h(x)$ $=$ $A$

[D].   $g(x)$ $\leqslant$ $f(x)$ $<$ $h(x)$ 且 $\lim_{x \rightarrow \square}$ $g(x)$ $=$ $\lim_{x \rightarrow \square}$ $h(x)$ $=$ $A$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$g(x)$ $\leqslant$ $f(x)$ $\leqslant$ $h(x)$ 且 $\lim_{x \rightarrow \square}$ $g(x)$ $=$ $\lim_{x \rightarrow \square}$ $h(x)$ $=$ $A$

数列极限存在的夹逼准则(B001)

问题

根据【夹逼准则】,若要使数列极限 $\lim_{x \rightarrow \infty}$ $x_{n}$ $=$ $a$ 存在,则需要满足下面哪个条件?

选项

[A].   $y_{n}$ $\leqslant$ $x_{n}$ $\leqslant$ $z_{n}$ 且 $\lim_{x \rightarrow \infty}$ $y_{n}$ $=$ $\lim_{x \rightarrow \infty}$ $a_{n}$ $=$ $a$

[B].   $y_{n}$ $\leqslant$ $x_{n}$ $\geqslant$ $z_{n}$ 且 $\lim_{x \rightarrow \infty}$ $y_{n}$ $=$ $\lim_{x \rightarrow \infty}$ $z_{n}$ $=$ $a$

[C].   $y_{n}$ $\leqslant$ $x_{n}$ $\leqslant$ $z_{n}$ 且 $\lim_{x \rightarrow \infty}$ $y_{n}$ $=$ $\lim_{x \rightarrow \infty}$ $z_{n}$ $=$ $a$

[D].   $y_{n}$ $\leqslant$ $x_{n}$ $\leqslant$ $z_{n}$ 且 $\lim_{x \rightarrow \infty}$ $y_{n}$ $=$ $a$, $\lim_{x \rightarrow \infty}$ $z_{n}$ $=$ $b$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$y_{n}$ $\leqslant$ $x_{n}$ $\leqslant$ $z_{n}$ 且 $\lim_{x \rightarrow \infty}$ $y_{n}$ $=$ $\lim_{x \rightarrow \infty}$ $z_{n}$ $=$ $a$

函数极限存在的充分必要条件(02-B001)

问题

下面【函数极限存在的充分必要条件】中,正确的是哪个?

选项

[A].   $\lim_{x \rightarrow \infty}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow + \infty}$ $f(x)$ $=$ $A$

[B].   $\lim_{x \rightarrow \infty}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow + \infty}$ $f(x)$ $=$ $\lim_{x \rightarrow – \infty}$ $f(x)$ $=$ $A$

[C].   $\lim_{x \rightarrow \infty}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow + \infty}$ $f(x)$ $=$ $\lim_{x \rightarrow – \infty}$ $f(x)$ $=$ $B$

[D].   $\lim_{x \rightarrow \infty}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow – \infty}$ $f(x)$ $=$ $A$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\lim_{x \rightarrow \infty}$ $f(x)$ $=$ $A$ $\color{Red}{\Leftrightarrow}$ $\lim_{x \rightarrow + \infty}$ $f(x)$ $=$ $\lim_{x \rightarrow – \infty}$ $f(x)$ $=$ $A$

函数极限存在的充分必要条件(01-B001)

问题

下面【函数极限存在的充分必要条件】中,正确的是哪个?

选项

[A].   $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow x_{0}^{-}}$ $f(x)$ $=$ $A$

[B].   $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow x_{0}^{+}}$ $f(x)$ $=$ $A$

[C].   $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow x_{0}^{+}}$ $f(x)$ $=$ $\lim_{x \rightarrow x_{0}^{-}}$ $f(x)$ $=$ $A$

[D].   $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{x \rightarrow x_{0}^{+}}$ $f(x)$ $=$ $\lim_{x \rightarrow x_{0}^{-}}$ $f(x)$ $=$ $B$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$ $\color{Red}{\Leftrightarrow}$ $\lim_{x \rightarrow x_{0}^{+}}$ $f(x)$ $=$ $\lim_{x \rightarrow x_{0}^{-}}$ $f(x)$ $=$ $A$

数列极限存在的充分必要条件(03-B001)

问题

下面【数列极限存在的充分必要条件】中,正确的是哪个?

选项

[A].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{3n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+1}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+2}$ $=$ $A$

[B].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{3n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+2}$ $=$ $A$

[C].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{3n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+1}$ $=$ $A$

[D].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{3n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+1}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+2}$ $=$ $B$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{Red}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{3n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+1}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{3n+2}$ $=$ $A$

Tips >>
[1]. 只有当一个数列的所有子列的极限都存在且相等的时候,这个数列的极限才存在;
[2]. 我们可以用 $3n$, $3n+1$ 和 $3n+2$ 完整的表示一个数列的所有子列.

数列极限存在的充分必要条件(02-B001)

问题

下面【数列极限存在的充分必要条件】中,正确的是哪个?

选项

[A].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{2n+1}$ $=$ $A$

[B].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n+1}$ $=$ $A$

[C].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{2n+1}$ $=$ $B$

[D].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $A$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{Red}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{2n+1}$ $=$ $A$

Tips >>
[1]. 只有当一个数列的所有子列的极限都存在且相等的时候,这个数列的极限才存在;
[2]. 我们可以用 $2n$ 和 $2n+1$ 完整的表示一个数列的所有子列.

数列极限存在的充分必要条件(01-B001)

问题

下面【数列极限存在的充分必要条件】中,正确的是哪个?

选项

[A].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $A$

[B].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{2n-1}$ $=$ $A$

[C].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n-1}$ $=$ $A$

[D].   $\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{White}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{2n-1}$ $=$ $B$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\lim_{n \rightarrow \infty}$ $x_{n}$ $=$ $A$ $\color{Red}{\Leftrightarrow}$ $\lim_{n \rightarrow \infty}$ $x_{2n}$ $=$ $\lim_{n \rightarrow \infty}$ $x_{2n-1}$ $=$ $A$

Tips >>
[1]. 只有当一个数列的所有子列的极限都存在且相等的时候,这个数列的极限才存在;
[2]. 我们可以用 $2n$ 和 $2n-1$ 完整的表示一个数列的所有子列.

反三角函数 $\text{arccot}$ 的常用特殊值(A004)

问题

下面【反三角函数 $\text{arccot}$ 的常用特殊值】中,正确的是哪个?

选项

[A].   $\text{arccot}$ $\sqrt{3}$ $=$ $\pi$ $\color{White}{//}$ $\text{arccot}$ $1$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\text{arccot}$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\text{arccot}$ $0$ $=$ $\frac{\pi}{2}$

[B].   $\text{arccot}$ $\sqrt{3}$ $=$ $\frac{\pi}{5}$ $\color{White}{//}$ $\text{arccot}$ $1$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\text{arccot}$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{2}$ $\color{White}{//}$ $\text{arccot}$ $0$ $=$ $\pi$

[C].   $\text{arccot}$ $\sqrt{3}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\text{arccot}$ $1$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\text{arccot}$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\text{arccot}$ $0$ $=$ $\frac{\pi}{2}$

[D].   $\text{arccot}$ $\sqrt{3}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\text{arccot}$ $1$ $=$ $0$ $\color{White}{//}$ $\text{arccot}$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\text{arccot}$ $0$ $=$ $\frac{\pi}{2}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\text{arccot}$ $\sqrt{3}$ $=$ $\frac{\pi}{6}$ $\color{Red}{//}$ $\text{arccot}$ $1$ $=$ $\frac{\pi}{4}$ $\color{Red}{//}$ $\text{arccot}$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{3}$ $\color{Red}{//}$ $\text{arccot}$ $0$ $=$ $\frac{\pi}{2}$

反三角函数 $\arctan$ 的常用特殊值(A004)

问题

下面【反三角函数 $\arctan$ 的常用特殊值】中,正确的是哪个?

选项

[A].   $\arctan$ $0$ $=$ $0$ $\color{White}{//}$ $\arctan$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arctan$ $1$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arctan$ $\sqrt{3}$ $=$ $\frac{\pi}{5}$

[B].   $\arctan$ $0$ $=$ $0$ $\color{White}{//}$ $\arctan$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arctan$ $1$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arctan$ $\sqrt{3}$ $=$ $\frac{\pi}{6}$

[C].   $\arctan$ $0$ $=$ $1$ $\color{White}{//}$ $\arctan$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arctan$ $1$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arctan$ $\sqrt{3}$ $=$ $\frac{\pi}{2}$

[D].   $\arctan$ $0$ $=$ $0$ $\color{White}{//}$ $\arctan$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arctan$ $1$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arctan$ $\sqrt{3}$ $=$ $\frac{\pi}{3}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\arctan$ $0$ $=$ $0$ $\color{Red}{//}$ $\arctan$ $\frac{\sqrt{3}}{3}$ $=$ $\frac{\pi}{6}$ $\color{Red}{//}$ $\arctan$ $1$ $=$ $\frac{\pi}{4}$ $\color{Red}{//}$ $\arctan$ $\sqrt{3}$ $=$ $\frac{\pi}{3}$

反三角函数 $\arccos$ 的常用特殊值(A004)

问题

下面【反三角函数 $\arccos$ 的常用特殊值】中,正确的是哪个?

选项

[A].   $\arccos$ $1$ $=$ $0$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arccos$ $\frac{1}{2}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arccos$ $0$ $=$ $\frac{\pi}{2}$

[B].   $\arccos$ $1$ $=$ $0$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arccos$ $\frac{1}{2}$ $=$ $\frac{\pi}{2}$ $\color{White}{//}$ $\arccos$ $0$ $=$ $\frac{\pi}{3}$

[C].   $\arccos$ $1$ $=$ $1$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arccos$ $\frac{1}{2}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arccos$ $0$ $=$ $\frac{1}{2}$

[D].   $\arccos$ $1$ $=$ $0$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arccos$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arccos$ $\frac{1}{2}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arccos$ $0$ $=$ $\frac{\pi}{2}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\arccos$ $1$ $=$ $0$ $\color{Red}{//}$ $\arccos$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{6}$ $\color{Red}{//}$ $\arccos$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{Red}{//}$ $\arccos$ $\frac{1}{2}$ $=$ $\frac{\pi}{3}$ $\color{Red}{//}$ $\arccos$ $0$ $=$ $\frac{\pi}{2}$

反三角函数 $\arcsin$ 的常用特殊值(A004)

问题

下面【反三角函数 $\arcsin$ 的常用特殊值】中,正确的是哪个?

选项

[A].   $\arcsin$ $0$ $=$ $0$ $\color{White}{//}$ $\arcsin$ $\frac{1}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arcsin$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arcsin$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{2}$ $\color{White}{//}$ $\arcsin$ $1$ $=$ $\frac{\pi}{3}$

[B].   $\arcsin$ $0$ $=$ $0$ $\color{White}{//}$ $\arcsin$ $\frac{1}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arcsin$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arcsin$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arcsin$ $1$ $=$ $\frac{\pi}{2}$

[C].   $\arcsin$ $0$ $=$ $0$ $\color{White}{//}$ $\arcsin$ $\frac{\pi}{6}$ $=$ $\frac{1}{2}$ $\color{White}{//}$ $\arcsin$ $\frac{\pi}{4}$ $=$ $\frac{\sqrt{2}}{2}$ $\color{White}{//}$ $\arcsin$ $\frac{\pi}{3}$ $=$ $\frac{\sqrt{3}}{2}$ $\color{White}{//}$ $\arcsin$ $\frac{\pi}{2}$ $=$ $1$

[D].   $\arcsin$ $0$ $=$ $1$ $\color{White}{//}$ $\arcsin$ $\frac{1}{2}$ $=$ $\frac{\pi}{6}$ $\color{White}{//}$ $\arcsin$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{White}{//}$ $\arcsin$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{3}$ $\color{White}{//}$ $\arcsin$ $1$ $=$ $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\arcsin$ $0$ $=$ $0$ $\color{Red}{//}$ $\arcsin$ $\frac{1}{2}$ $=$ $\frac{\pi}{6}$ $\color{Red}{//}$ $\arcsin$ $\frac{\sqrt{2}}{2}$ $=$ $\frac{\pi}{4}$ $\color{Red}{//}$ $\arcsin$ $\frac{\sqrt{3}}{2}$ $=$ $\frac{\pi}{3}$ $\color{Red}{//}$ $\arcsin$ $1$ $=$ $\frac{\pi}{2}$

三角函数 $\cot$ 的特殊角数值(A004)

问题

下面【三角函数 $\cot$ 的特殊角数值】中,正确的是哪个?

选项

[A].   $\cot$ $0$ $=$ $不存在$ $\color{White}{//}$ $\cot$ $\frac{\pi}{6}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\cot$ $\frac{\pi}{3}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{2}$ $=$ $0$

[B].   $\cot$ $0$ $=$ $不存在$ $\color{White}{//}$ $\cot$ $\frac{\pi}{6}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\cot$ $\frac{\pi}{3}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{2}$ $=$ $0$

[C].   $\cot$ $0$ $=$ $不存在$ $\color{White}{//}$ $\cot$ $\frac{\pi}{6}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\cot$ $\frac{\pi}{3}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{2}$ $=$ $1$

[D].   $\cot$ $0$ $=$ $0$ $\color{White}{//}$ $\cot$ $\frac{\pi}{6}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\cot$ $\frac{\pi}{3}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\cot$ $\frac{\pi}{2}$ $=$ $不存在$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\cot$ $0$ $=$ $不存在$ $\color{Red}{//}$ $\cot$ $\frac{\pi}{6}$ $=$ $\sqrt{3}$ $\color{Red}{//}$ $\cot$ $\frac{\pi}{4}$ $=$ $1$ $\color{Red}{//}$ $\cot$ $\frac{\pi}{3}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{Red}{//}$ $\cot$ $\frac{\pi}{2}$ $=$ $0$

三角函数 $\tan$ 的特殊角数值(A004)

问题

下面【三角函数 $\tan$ 的特殊角数值】中,正确的是哪个?

选项

[A].   $\tan$ $0$ $=$ $1$ $\color{White}{//}$ $\tan$ $\frac{\pi}{6}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\tan$ $\frac{\pi}{3}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{2}$ $=$ $不存在$

[B].   $\tan$ $0$ $=$ $0$ $\color{White}{//}$ $\tan$ $\frac{\pi}{6}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\tan$ $\frac{\pi}{3}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{2}$ $=$ $不存在$

[C].   $\tan$ $0$ $=$ $0$ $\color{White}{//}$ $\tan$ $\frac{\pi}{6}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\tan$ $\frac{\pi}{3}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{2}$ $=$ $不存在$

[D].   $\tan$ $0$ $=$ $0$ $\color{White}{//}$ $\tan$ $\frac{\pi}{6}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{4}$ $=$ $1$ $\color{White}{//}$ $\tan$ $\frac{\pi}{3}$ $=$ $\sqrt{3}$ $\color{White}{//}$ $\tan$ $\frac{\pi}{2}$ $=$ $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\tan$ $0$ $=$ $0$ $\color{Red}{//}$ $\tan$ $\frac{\pi}{6}$ $=$ $\frac{\sqrt{3}}{3}$ $\color{Red}{//}$ $\tan$ $\frac{\pi}{4}$ $=$ $1$ $\color{Red}{//}$ $\tan$ $\frac{\pi}{3}$ $=$ $\sqrt{3}$ $\color{Red}{//}$ $\tan$ $\frac{\pi}{2}$ $=$ $不存在$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress