极限什么时候需要区分正负,什么时候不需要区分正负?

一、前言 前言 - 荒原之梦

在高等数学的一些题目中(假设变量为 x),我们会遇到需要区分:
x0+x0;
xk+xk;
x+x
的情况(其中 k 为常数)。

以及不需要区分正负,只需要考虑:
x0;
xk;
x
的情况。

那么,我们该怎么判度一个含有极限的极限式子是否需要考虑极限的正负呢?

在本文中,「 」将通过思路图和例题,为同学们讲清楚这个问题。

继续阅读“极限什么时候需要区分正负,什么时候不需要区分正负?”

通过画图理解函数与数列之间相互嵌套复合后的敛散与单调性

一、前言 前言 - 荒原之梦

函数与数列具有很多相似的性质,例如敛散性和单调性等,但毕竟函数是一个基于“连续”的数学概念,而数列是一个基于“离散”的数学概念,所以,函数和数列之间也存在着诸多的区别。

那么,如果让函数和数列,通过嵌套复合的方式组成新的数列,则新数列的敛散性和单调性会呈现出来什么样的性质呢,我们该如何快速、形象又准确地判断出来这些性质呢?

在本文中,「 」将使用“ ”解法和传统解法两种方法为同学们提供一些求解此类问题的全新思路,希望可以帮助同学们提升解决这类问题的速度并理清相关思路。

继续阅读“通过画图理解函数与数列之间相互嵌套复合后的敛散与单调性”

对“二阶嵌套分式”的一种快速变形定理

一、前言 前言 - 荒原之梦

在做数学题的时候,掌握一些计算技巧,可以帮助我们加快解题速度。在本文中,「荒原之梦考研数学」就给同学讲解一下形如下面这个“嵌套分式”的快速等价变形计算方法:

a/bc/d

继续阅读“对“二阶嵌套分式”的一种快速变形定理”

峰式 (FENG Type) 图形法:直观地理解数列及数列的基本性质

一、前言 前言 - 荒原之梦

在高等数学中,我们一般会用 “{xn}” 或者 “{yn}” 表示数列,数列和函数有很多异同点,要想深入地理解数列,首先就要明白什么是数列,以及数列的敛散性。

在本文中,「荒原之梦考研数学」将使用通俗易懂的解释,为同学们讲明白数列的那些事。

继续阅读“峰式 (FENG Type) 图形法:直观地理解数列及数列的基本性质”

扩展的极限“抓大去小”定理

一、前言 前言 - 荒原之梦

在「荒原之梦考研数学」的文章《取大头:分子或分母中的加减法所连接的部分可以使用“取大头”算法》中,我们主要讨论了当 x+, 且 xn 中的 n 为正整数的时候,极限式子“取大头去小头”的定理,在本文中,我们将对极限式子的“取大头去小头”的定理进行扩展,助力同学们提升解题速度。

继续阅读“扩展的极限“抓大去小”定理”

“峰式”变限积分法:判断方程实数根(或函数实数解)存在性的另一种方法

一、前言 前言 - 荒原之梦

一般情况下,我们判断方程实数根的存在性或者函数实数解的存在性(也就是函数图像与 X 轴是否存在交点,以及交点的个数)通常使用的方法是求导法,也就是通过求导判断函数的单调性,再利用函数的极值,判断函数图像与 X 轴是否存在交点。

在本文中,「荒原之梦考研数学」将通过原创的“峰式”变限积分法,来判断方程实数根(或函数实数解)的存在性,为同学们在求解该类型题目时提供另一种解题思路。

继续阅读““峰式”变限积分法:判断方程实数根(或函数实数解)存在性的另一种方法”

取对数的作用:压缩数值、变非线性为线性

一、前言 前言 - 荒原之梦

取对数的作用:压缩数值、变非线性为线性 | 「荒原之梦考研数学」 | 图 01.
图 01. 朱诺号木星探测器携带物品之一:意大利太空署提供的伽利略铝质纪念牌(宽 2.8 英寸,高 2 英寸,重 6 克)。该纪念碑镌刻有伽利略的自画像,以及他于 1610 年发现木星卫星的亲笔记录字迹。来源:wikipedia.org

意大利物理学家、数学家和天文学家伽利略曾经说过:“给我空间、时间及对数,我就可以创造一个宇宙。”,同时,在我们学习数学或者使用数学的时候,也常常会遇到“对数”。

但是,取对数到底有什么用呢?在本文中,「荒原之梦考研数学」将为同学们揭开对数的“神秘”面纱。

正文

压缩数值

取对数的作用:压缩数值、变非线性为线性 | 「荒原之梦考研数学」 | 图 02.
图 02. 通过对数函数 y=lnx, 可以将相距较大的两个数字 AB 转换为相距较小的数字 ab, 并且,当 AB 的值越大的时候,转换得到的 ab 的值差距越小。

对数的其中一个作用就是可以“压缩”数值,或者说,对数可以反应较大数字的“量级”。

例如,对于数字 123456654321 是两个相差特别大的数字,如果要比较这样的数字的大小,或者将其绘制在坐标图上,都不是很好表示,但如果我们对其取对数,就可以在减少这样的差异,并且不改变原有的大小关系(因为对数函数是一个单调递增的函数,可以保留原有的相对大小关系):

log101234565.0915

log106543215.8158

在上面做数值压缩的过程中,我们使用的是底数为 10 的“常用对数”,因为常用的数字就是十进制的,用底数为 10 的对数可以很方便的显示出原有数字的量级(一个“量级”就是十进制的一个“位”,即千位、百位和十位等),例如:

log106×1088.7782

log109×1088.9542

log102×1099.3010

当然,用其他底数也可以大致反映出不同十进制数字的相对大小,但不能反映出十进制数字原本的量级:

loge6×10820.2124

loge9×10820.6179

loge2×10921.4164

变非线性为线性

此外,取对数的另一个作用就是将非线性的式子转换为线性的式子。

例如,当 Z 为变量,n 为常数的时候,”Zn” 不是一个线性表达式,但是,对其取对数之后,就可以转变为线性表达式 “nlogZ”:

logZn=nlogZ

同样的,当 xy 为变量的时候,”xy” 不是一个线性表达式,但是对其取对数之后,就可以转变为线性表达式 “logx + logy”:

log(xy)=logx+logy

线性表达式在计算上更加简单,在人工智能领域有着广泛且深入的应用。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

用“峰式画线法”证明矩阵乘法的转置运算律

一、前言 前言 - 荒原之梦

当矩阵的乘法和转置运算结合的时候,有如下运算律:

(AB)=BA

从上面这条定理出发,我们可以验证任意多个矩阵相乘时的转置运算律。例如,若令矩阵 B = CD, 则:

 (AB)=BA [A(CD)]=(CD)A [ACD]=DCA

在本文中,「荒原之梦考研数学」将使用原创的“峰式画线法”证明矩阵乘法的转置运算律。

继续阅读“用“峰式画线法”证明矩阵乘法的转置运算律”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress