2024年考研数二第10题解析:相似对角化、矩阵的特征值与特征向量

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2024年考研数二第10题解析:相似对角化、矩阵的特征值与特征向量”

2024年考研数二第09题解析:抽象矩阵秩的特征

一、题目题目 - 荒原之梦

难度评级:

继续阅读“2024年考研数二第09题解析:抽象矩阵秩的特征”

2024年考研数二第08题解析:逆矩阵的计算

一、题目题目 - 荒原之梦

设 $\boldsymbol{A}$ 为三阶矩阵, $\boldsymbol{P}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$, 若 $\boldsymbol{P}^{\mathrm{\top}} \boldsymbol{A} \boldsymbol{P}^{2}=\left(\begin{array}{ccc}a+2 c & 0 & c \\ 0 & b & 0 \\ 2 c & 0 & c\end{array}\right)$, 则 $\boldsymbol{A}=$

A. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)$

B. $\left(\begin{array}{lll}b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a\end{array}\right)$

C. $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$

D. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a\end{array}\right)$

难度评级:

继续阅读“2024年考研数二第08题解析:逆矩阵的计算”

2024年考研数二第07题解析:积分敛散性的判别

一、题目题目 - 荒原之梦

设非负函数 $f(x)$ 在 $[0,+\infty)$ 上连续, 给出以下三个命题:

(1)若 $\int_{0}^{+\infty} f^{2}(x) \mathrm{~d} x$ 收敛, 则 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛.

(2)若存在 $p>1$, 使得 $\lim \limits_{x \rightarrow+\infty} x^{p} f(x)$ 存在, 则 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛.

(3)若 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛, 则存在 $p>1$, 使得 $\lim \limits_{x \rightarrow+\infty} x^{p} f(x)$ 存在.

其中真命题个数为( )

(A) 0

(B) 1

(C) 2

(D) 3

难度评级:

继续阅读“2024年考研数二第07题解析:积分敛散性的判别”

转为极坐标系后,怎么确定新的积分上下限?

一、题目题目 - 荒原之梦

已知积分区域 $D$ $=$ $\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\}$, 求二重积分 $I$ $=$ $\iint_{D} \sqrt{1-x^{2}-y^{2}} \mathrm{~d} \sigma$.

难度评级:

继续阅读“转为极坐标系后,怎么确定新的积分上下限?”

通过罗尔定理推导不同阶导数之间零点个数的关系

一、前言 前言 - 荒原之梦

通过本文,荒原之梦考研网将带你一起搞明白如下这类问题:

*如果三阶导数 $f^{\prime \prime \prime}(x)$ 没有零点,那么其原函数 $f(x)$ 最多可能存在多少个零点?

**如果三阶导数 $f^{\prime \prime \prime}(x)$ 有 $1$ 个零点,那么其原函数 $f(x)$ 最多可能存在多少个零点?

继续阅读“通过罗尔定理推导不同阶导数之间零点个数的关系”

特殊条件约束下的一般非齐次二阶线性微分方程特解的求解

一、题目题目 - 荒原之梦

已知,方程 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4 y$ $=$ $\mathrm{e}^{-2 x}$ 满足条件 $y(0)=0$ 和 $y^{\prime}(0)=1$. 则该方程的特解为( )

难度评级:

继续阅读“特殊条件约束下的一般非齐次二阶线性微分方程特解的求解”

考研线性代数思维导图:08-矩阵的运算 [XD-20250201]

涉及的知识点

01. 矩阵的加法运算
02. 矩阵的数乘运算
03. 矩阵的乘法运算

04. 矩阵的转置运算
05. 方阵的幂

继续阅读“考研线性代数思维导图:08-矩阵的运算 [XD-20250201]”

2024年考研数二第06题解析:绘制积分区域,变换积分次序

一、题目题目 - 荒原之梦

设 $f(x, y)$ 是连续函数, 则 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \mathrm{~d} x \int_{\sin x}^{1} f(x, y) \mathrm{~d} y=(\quad)$

(A) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$

(B) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$

(C) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$

(D) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$

难度评级:

继续阅读“2024年考研数二第06题解析:绘制积分区域,变换积分次序”

考研线性代数思维导图:07-特殊的矩阵 [XD-20250201]

涉及的知识点

01. 矩阵的表示方法
02. 方阵
03. 行向量
04. 列向量
05. 零矩阵
06. 单位矩阵

07. 数量矩阵
08. 对角矩阵
09. 上三角矩阵
10. 下三角矩阵
11. 对称矩阵
12. 反对称矩阵

继续阅读“考研线性代数思维导图:07-特殊的矩阵 [XD-20250201]”

2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限

一、题目题目 - 荒原之梦

已知函数 $f(x, y)$ $=$ $\left\{\begin{array}{l}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}, & x y \neq 0 \\ 0, & x y=0\end{array}\right.$, 则在点 $(0,0)$ 处

(A) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微

(B) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微

(C) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微

(D) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微

难度评级:

继续阅读“2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress