用“峰式画线法”证明矩阵乘法的转置运算律

一、前言 前言 - 荒原之梦

当矩阵的乘法和转置运算结合的时候,有如下运算律:

$$
\textcolor{yellow}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$

从上面这条定理出发,我们可以验证任意多个矩阵相乘时的转置运算律。例如,若令矩阵 $\boldsymbol{B}$ $=$ $\boldsymbol{C} \boldsymbol{D}$, 则:

$$
\begin{aligned}
& \ (\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top} \\
\Rightarrow & \ [\boldsymbol{A} (\boldsymbol{C} \boldsymbol{D})]^{\top} = (\boldsymbol{C} \boldsymbol{D})^{\top} \boldsymbol{A}^{\top} \\
\Rightarrow & \ [\boldsymbol{A} \boldsymbol{C} \boldsymbol{D}]^{\top} = \boldsymbol{D}^{\top} \boldsymbol{C}^{\top} \boldsymbol{A}^{\top} \\
\end{aligned}
$$

在本文中,「荒原之梦考研数学」将使用原创的“峰式画线法”证明矩阵乘法的转置运算律。

继续阅读“用“峰式画线法”证明矩阵乘法的转置运算律”

用一般具体的矩阵证明矩阵乘法的转置运算律

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将使用一般具体的矩阵证明下面的定理(矩阵乘法的转置运算律):

$$
\textcolor{springgreen}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$

继续阅读“用一般具体的矩阵证明矩阵乘法的转置运算律”

用完全抽象的矩阵证明矩阵乘法的转置运算律

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将使用完全抽象的矩阵证明下面的定理(矩阵乘法的转置运算律):

$$
\textcolor{springgreen}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$

继续阅读“用完全抽象的矩阵证明矩阵乘法的转置运算律”

基于主对角线元素复杂度梯度的矩阵/行列式化简策略

一、前言 前言 - 荒原之梦

在「荒原之梦考研数学」的另一篇文章《矩阵/行列式 的一个优化策略》中,我们首次提出了在包含多个 $0$ 元素的矩阵/行列式中 的一个优化策略,那么,如果初始的矩阵/行列式中没有 $0$ 元素,或者只有少量的 $0$ 元素该怎么办呢?

在本文中,我们将以矩阵/行列式的主对角线为基准,通过元素复杂度梯度排列的方式,给同学们提供一种适用性更广泛的矩阵/行列式化简的方法。

继续阅读“基于主对角线元素复杂度梯度的矩阵/行列式化简策略”

投石问路:线性代数中的升阶法详解

一、前言 前言 - 荒原之梦

在对高阶行列式进行计算的时候,其中一种计算方式就是“升阶”,也就是将原来的 $n$ 阶行列式升为 $n+1$ 阶行列式。

那么,什么样的行列式可以尝试升阶操作?怎么进行升阶操作?升阶之后该怎么进行接下来的计算呢?

在本文中,「荒原之梦考研数学」将就以上问题为同学们详细讲解。

继续阅读“投石问路:线性代数中的升阶法详解”

矩阵/行列式消 $0$ 的一个优化策略

一、前言 前言 - 荒原之梦

大部分时候,在对矩阵或者行列式进行运算的时候,我们都倾向于通过初等变换使得矩阵/行列式中产生更多的 $0$ 元素,或者说倾向于将矩阵/行列式中的非 $0$ 元素消为 $0$ 元素(在本文中,我们将这一类操作简称为“消 $0$”)。

那么,在消 $0$ 的时候,有什么注意事项呢?该采取什么样的策略,才能尽可能又快又多地消出来更多的 $0$ 元素呢?

在本文中,「荒原之梦考研数学」将为同学们详细讲解。

继续阅读“矩阵/行列式消 $0$ 的一个优化策略”

二阶矩阵的快速求逆公式

一、前言 前言 - 荒原之梦

求解逆矩阵是线性代数中的一个基本知识点。在考试时的时候,要求解的逆矩阵一般是二阶或者三阶的矩阵,在本文中,「荒原之梦考研数学」就给同学们一个二阶矩阵的快速求逆公式以及该公式的记忆方法。

继续阅读“二阶矩阵的快速求逆公式”

“两点确定一条直线”的思想在特例法中的应用

一、前言 前言 - 荒原之梦

“两点确定一条直线”的思想在特例法中的应用 | 荒原之梦考研数学
图 01.

在本文中,「荒原之梦考研数学」将借助几何中“两点之间确定一条直线”的思想,帮助同学们理解什么时候可以使用特例法求解题目答案。

继续阅读““两点确定一条直线”的思想在特例法中的应用”

关于由 $\boldsymbol{AB}$ $=$ $\boldsymbol{O}$ 可得 $\mathbf{r} (\boldsymbol{A})$ $+$ $\mathbf{r} (\boldsymbol{B})$ $\leqslant$ $n$ 的一个简单证明方式

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将为同学们证明下面这个公式:

$$
\begin{aligned}
& \boldsymbol{AB} = \boldsymbol{O} \\
\Leftrightarrow & \ \mathbf{r} (\boldsymbol{A}) + \mathbf{r} (\boldsymbol{B}) \leqslant n
\end{aligned}
$$

其中,矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 都是 $n \times n$ 阶方阵。

继续阅读“关于由 $\boldsymbol{AB}$ $=$ $\boldsymbol{O}$ 可得 $\mathbf{r} (\boldsymbol{A})$ $+$ $\mathbf{r} (\boldsymbol{B})$ $\leqslant$ $n$ 的一个简单证明方式”

非齐次线性方程组不同解向量的系数相加等于 1 时,相加所得的向量也是该方程的解

一、题目题目 - 荒原之梦

难度评级:

继续阅读“非齐次线性方程组不同解向量的系数相加等于 1 时,相加所得的向量也是该方程的解”

不同的数字相减一定不得零,但相加就不一定了

一、题目题目 - 荒原之梦

难度评级:

继续阅读“不同的数字相减一定不得零,但相加就不一定了”

利用“对称初等变换”求解合同矩阵中的可逆矩阵 C

一、题目题目 - 荒原之梦

难度评级:

继续阅读“利用“对称初等变换”求解合同矩阵中的可逆矩阵 C”

对称矩阵/单位矩阵经“对称初等变换”可以生成互为转置矩阵的两个矩阵

一、前言 前言 - 荒原之梦

关于主对角线对称的矩阵,特别是单位矩阵具有很多的神奇的性质,在「荒原之梦考研数学」的《单位矩阵可以用来记录初等变换》一文中,我们学习了单位矩阵在“存储”和“写入”矩阵初等行变换和初等列变换上的能力。

在本文中,我们将学习单位矩阵和一般的对称矩阵在“对称初等变换”条件下自动生成其转置矩阵的特殊性质。

graph TD
	O{O} --第 1 行与第 2 行的初等变换--> A1[A1];
	O --第 1 列与第 2 列的初等变换--> B1[B1];
	A1 --第 2 行与第 3 行的初等变换--> A2[A2];
	B1 --第 2 列与第 3 列的初等变换--> B2[B2];
	A2 --第 i 行与第 j 行的初等变换--> A[A];
	B2 --第 i 列与第 j 列的初等变换--> B[B];
	A --> C[A 和 B 互为转置矩阵];
	B --> C;
继续阅读“对称矩阵/单位矩阵经“对称初等变换”可以生成互为转置矩阵的两个矩阵”

单位矩阵可以用来记录初等变换

一、前言 前言 - 荒原之梦

线性代数中的“单位矩阵($\boldsymbol{E}$)”是一个非常特别的矩阵,这个矩阵非常简单,以至于可以用来记录初等变换的过程。

在本文中,「荒原之梦考研数学」就给同学们讲解一下单位矩阵的这一作用。

继续阅读“单位矩阵可以用来记录初等变换”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress