一、题目
已知,矩阵 $\boldsymbol{A}$ 满足 $a \boldsymbol{A}^{2} + b \boldsymbol{A} + c \boldsymbol{E}$ $=$ $0$, 其中 $c \neq 0$.
请证明:矩阵 $\boldsymbol{A}$ 可逆,并求解 $\boldsymbol{A}^{-1}$.
继续阅读“逆矩阵快速求解公式:满足一元二次方程形式的矩阵”已知,矩阵 $\boldsymbol{A}$ 满足 $a \boldsymbol{A}^{2} + b \boldsymbol{A} + c \boldsymbol{E}$ $=$ $0$, 其中 $c \neq 0$.
请证明:矩阵 $\boldsymbol{A}$ 可逆,并求解 $\boldsymbol{A}^{-1}$.
继续阅读“逆矩阵快速求解公式:满足一元二次方程形式的矩阵”在做一些涉及极限的求和题目时,我们会发现,有些解法就是通过将求和转为积分的方式完成的求解。
那么,为什么极限场景下的求和一般可以表示为积分呢?
在本文中,「荒原之梦考研数学」通过将积分的物理意义从有向的几何量(面积、体积)或者物理意义,更改为“有向权重”的方式,探讨一种更接近积分与求和所蕴含的本质的理解方式,从而理清楚积分与求和之间的关系。
继续阅读“为什么极限场景下的求和一般可以表示为积分?”这里的“有向”是指存在“正”和“负”两种值。与传统上对积分有向面积或者有向体积的定义一样,本文中也将位于二维坐标水平轴或者三维坐标水平面上方的“有向权重”定义为“正”,下方的“有向权重”则定义为“负”——当然,“有向”并不是本文讨论的重点,也不是本文所提出的“权重”的必须性质,所以,在本文中接下来阐述“有向权重”的时候,会侧重于讨论“权重”本身。
用求和符号 $\sum$ 表示的求和运算是一种非常基本运算形式。在本文中,「荒原之梦考研数学」将通过地铁线路的方式,为同学们形象地解释单重求和与双重求和的计算思路。
继续阅读“用地铁线路理解单重求和与双重求和的计算”凑微分的目的就是将积分 $\int \Phi(x) \mathrm{~d} x$ 改写成 $\int f(\phi(x)) \mathrm{~d} \phi(x)$ 的形式,即:
$$
\int \textcolor{orange}{\Phi(x)} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\phi(x)}) \mathrm{~d} \textcolor{lightgreen}{\phi(x)}
$$
经过上述变换,就可以将积分变量从 $x$ 拓展成更复杂的 $\phi(x)$, 从而可以在大多数时候达到简化被积函数的作用。
在本文中,「荒原之梦考研数学」就给同学们汇总了考研数学(高等数学)解题过程中常用的凑微分公式。
继续阅读“常用的凑微分公式汇总”小时候,梦想那么远,天空,却那么近;
长大后,梦想那么近,天空,却那么远。
小时候,距离能够实现梦想还有好多好多年,很多事情都需要“长大了”才能去做。但那时候,做什么都如同初生的牛犊,即便是头顶的万米高空,仿佛也可以触手可及;
长大后,梦想往往就近在咫尺,有时候,只隔了一个围墙,有时候,只隔了一个橱窗。然而,一次次的失败、一次次现实的打击,却让脚步变得越来越畏惧,天空似乎也不再触手可及。
其实,梦想和天空都没有变,只是,长大了,心就变小了。
2025 年 05 月 05 日
已知函数 $f(x)$ 在 $[0, 1]$ 上具有 $2$ 阶导数,且 $f(0) = 0$, $f(1) = 1$, $\int_{0}^{1} f(x) \mathrm{~d} x = 1$, 证明:
(I) 存在 $\xi \in (0, 1)$, 使得 $f^{\prime}(\xi) = 0$;
(Ⅱ) 存在 $\eta \in (0, 1)$, 使得 $f^{\prime \prime}(\eta) < -2$.
难度评级:
继续阅读“2019年考研数二第21题解析:拉格朗日中值定理、罗尔定理、费马引理、积分的几何意义、反证法(5种解法+18幅图)”已知函数 $f \left( u, v \right)$ 满足 $f \left( x + y, \frac{y}{x} \right) = x^{2} – y^{2}$,则:
$$
\begin{aligned}
& \left. \frac{\partial f}{\partial u} \right|_{\substack{u=1 \\ v=1}} = ? \\ \\
& \left. \frac{\partial f}{\partial v} \right|_{\substack{u=1 \\ v=1}} = ?
\end{aligned}
$$
难度评级:
继续阅读“求复合函数偏导数的两种方式:先求导再代换、先代换再求导”$$
I = \lim_{x \rightarrow 0} \frac{\mathrm{e}^{x}-1 – x-\frac{x}{2} \sin x}{\sin x – x \cos x}
$$
如图 01 所示,$X$ 轴上有一个线密度为常数 $\mu$, 长度为 $l$ 的细杆 $\bar{L}$,若质量为 $m$ 的质点 $\dot{M}$ 到细杆右端的距离为 $a$, 且引力系数为 $k$, 则质点 $\dot{M}$ 和细杆 $\bar{L}$ 之间引力的大小 $F$ 可表示为什么?
判断下面反常积分的敛散性:
$$
\begin{aligned}
I_{1} & = \int_{− \infty}^{0} \frac{1}{x^{2}} \mathrm{e}^{\frac{1}{x}} \mathrm{~d} x \\ \\
I_{2} & = \int_{0}^{+ \infty} \frac{1}{x^{2}} \mathrm {e}^{\frac{1}{x}} \mathrm{~d} x
\end{aligned}
$$
在「荒原之梦考研数学」的《田字格分段函数融合法》这篇文章中,我们初步掌握了基于“田字格”这一工具确定涉及分段函数的计算时应该分几段考虑的问题。
在本文中,我将继续拓展“田字格”这一工具,在自变量含有绝对值运算的题目中,给同学们讲解一下如何使用“田字格”确定应该分几段计算含有分段函数的相关问题。
继续阅读“峰式田字格:确定变量含有绝对值的分段函数的复合运算要分几段计算”