计算极限 $\lim_{n \rightarrow \infty}$ $\sqrt[n]{1 + x^{n} + (\frac{x^{2}}{2})^{n}}$

一、题目题目 - 荒原之梦

$$
\lim_{n \rightarrow \infty} \sqrt[n]{1 + x^{n} + (\frac{x^{2}}{2})^{n}} = ?
$$

其中,$x$ $>$ $0$.

对变量取值范围的讨论是解答本题的重点,详情见下文……

难度评级:

继续阅读“计算极限 $\lim_{n \rightarrow \infty}$ $\sqrt[n]{1 + x^{n} + (\frac{x^{2}}{2})^{n}}$”

计算极限 $\lim_{x \rightarrow \infty}$ $\sqrt[n]{1 + 2^{n} + 3^{n}}$

一、题目题目 - 荒原之梦

$$
\lim_{x \rightarrow \infty} \sqrt[n]{1 + 2^{n} + 3^{n}} = ?
$$

本题可以使用夹逼准则解出,下文中会介绍使用夹逼准则时一个重要的放缩原则和思路。

难度评级:

继续阅读“计算极限 $\lim_{x \rightarrow \infty}$ $\sqrt[n]{1 + 2^{n} + 3^{n}}$”

将 $e^{x}$ $-$ $1$ 和 $a^{x}$ $-$ $1$ 的等价无穷小结合记忆

一、前言 前言 - 荒原之梦

在高等数学中,有些公式在本质上是有联系的,如果我们在掌握了这种联系的基础上理解这些公式,就能记忆得更加牢固。

在本文中,荒原之梦网(zhaokaifeng.com)就利用公式间的关联关系分析如何记忆 $e^{x}$ $-$ $1$ 和 $a^{x}$ $-$ $1$ 的等价无穷小。

继续阅读“将 $e^{x}$ $-$ $1$ 和 $a^{x}$ $-$ $1$ 的等价无穷小结合记忆”

计算极限 $\lim_{x \rightarrow \infty}$ $\big($ $\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3}$ $\big)^{n}$

一、题目题目 - 荒原之梦

$$
\lim_{x \rightarrow \infty} \Big( \frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3} \Big)^{n} = ?
$$

其中,$a$ $>$ $0$, $b$ $>$ $0$, $c$ $>$ $0$.

难度评级:

继续阅读“计算极限 $\lim_{x \rightarrow \infty}$ $\big($ $\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3}$ $\big)^{n}$”

什么是有理数?什么是无理数?

一、前言 前言 - 荒原之梦

简单地说,有理数就是可以写成两个整数比值形式的数,而无理数就是不能写成两个整数比值形式的数。

在本文中,「荒原之梦考研数学」将通过简单的定理描述和示例,让同学们迅速理解这两个概念。

继续阅读“什么是有理数?什么是无理数?”

线性表示的部分与整体的关系(C019)

问题

若 $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 中的部分向量线性表示,则以下说法中正确的是哪个?

选项

[A].   $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 中的另一部分线性表示

[B].   $\boldsymbol{\beta}$ 或许可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 线性表示

[C].   $\boldsymbol{\beta}$ 不可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 线性表示

[D].   $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 线性表示


答 案

$\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 整体线性表示

线性相关与线性无关边缘处性质的推论(C019)

问题

已知,$n$ 个 $n$ 维向量 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ 线性无关,则以下关于则任一 $n$ 维向量 $\boldsymbol{\alpha}$ 与向量组 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 之间关系的说法中,正确的是哪个?

选项

[A].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均不可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示

[B].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,但表示法不唯一

[C].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,且表示法唯一

[D].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 不一定可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示


答 案

任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,且表示法唯一


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress