不是所有题目都有巧妙做法:这道常数矩阵的逆矩阵题目直接算就很简单 一、题目 已知 A=[001010100][100012001][100030001], 则 (13A)−1=? 难度评级: 继续阅读“不是所有题目都有巧妙做法:这道常数矩阵的逆矩阵题目直接算就很简单”
逆矩阵的转置矩阵有啥性质你知道吗? 一、题目 已知 A,B 均为 n 阶矩阵,且 AB=E, 则 (E+BA)[E−B(E+A⊤B⊤)−1A]=? 难度评级: 关于可逆矩阵的性质,可以参考《可逆矩阵的性质汇总》 继续阅读“逆矩阵的转置矩阵有啥性质你知道吗?”
求解具体矩阵时一定记得先用对应的抽象矩阵公式化简 一、题目 已知,三阶矩阵 A 的逆矩阵为 A−1=[011101110], 则矩阵 A 的伴随矩阵 A∗ 的逆矩阵 (A∗)−1=? 难度评级: 继续阅读“求解具体矩阵时一定记得先用对应的抽象矩阵公式化简”
拼接矩阵会对秩产生什么样的影响? 一、题目 已知 A,B 均为 n 阶非零矩阵, 且秩 r(A)=r(B), 则以下说法中,正确的是哪个? (A) r(A,B)=r(A). (B) r(A,B)=2r(B). (C) r(A,B)⩽2r(B). (D) r(A−B)=0. 难度评级: 继续阅读“拼接矩阵会对秩产生什么样的影响?”
与可逆矩阵相乘不会改变秩 一、题目 设 A 为 m×n 矩阵, C 是 n 阶可逆矩阵, r(A)=r, 矩阵 B=AC 的秩为 r1, 则 r 与 r1 的关系如何? 难度评级: 继续阅读“与可逆矩阵相乘不会改变秩”
若一个矩阵的秩为 3,是否意味着该矩阵的任意二阶子式都不为零? 一、前言 你是否有这样的疑问:若一个 n 阶矩阵的秩为 k, 那是否意味着该矩阵的任意 k−1 阶子式都不为零?(其中,k–1>0 且 k 为正整数。) 下面通过详细的分析以及一个易于理解的比喻就可以让我们搞明白这个问题。 继续阅读“若一个矩阵的秩为 3,是否意味着该矩阵的任意二阶子式都不为零?”
向量组线性相关的 3 个判断方法和向量组线性无关的 2 个判断方法 一、题目 下面的向量组中,线性无关的是哪个? (A) (1,2),(3,4),(5,6). (B) (1,2,3),(4,5,6),(3,6,9). (C) (1,2,3),(4,6,5),(7,9,8). (D) (1,2,3),(0,0,0),(4,7,5). 难度评级: 继续阅读“向量组线性相关的 3 个判断方法和向量组线性无关的 2 个判断方法”
四两拨千斤:把计算代数余子式之和转变为求解行列式的值 一、题目 已知,有行列式 D=|1100022000334004|, 则该行列式第一行元素的代数余子式之和是多少? 难度评级: 继续阅读“四两拨千斤:把计算代数余子式之和转变为求解行列式的值”
初等变换有可能改变行列式的值吗? 一、前言 初等变换可以帮助我们对行列式进行化简操作,但是,在使用初等变换化简行列式的时候也要注意,因为,初等变换是有可能改变行列式原本数值的哦~ 继续阅读“初等变换有可能改变行列式的值吗?”
利用逆序求 n 阶行列式的值 一、前言 我们都知道,3 阶行列式是可以利用主副对角线计算出具体数值的,高于 3 阶的 n 阶行列式虽然不能这么计算,但是也有自己的计算公式——借助“逆序”这一工具,我们可以求解任意阶数的行列式的值。 Tips 关于逆序数的计算方法, 可以参考《你知道怎么判断一组数字的逆序数吗?》这篇文章。 继续阅读“利用逆序求 n 阶行列式的值”