一、题目
已知 $\boldsymbol{\alpha_{1}}$, $\boldsymbol{\alpha_{2}}$, $\cdots$, $\boldsymbol{\alpha}_{s}$(其中 $s \leqslant n$)是一组 $n$ 维列向量,$\boldsymbol{A}$ 是 $n$ 阶矩阵。如果:
$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{\alpha}_{1} = \boldsymbol{\alpha}_{2}, \\
& \boldsymbol{A} \boldsymbol{\alpha}_{2} = \boldsymbol{\alpha}_{3}, \\
& \cdots, \\
& \boldsymbol{A} \boldsymbol{\alpha}_{s-1} = \boldsymbol{\alpha}_{s} \neq \mathbf{0}, \\
& \boldsymbol{A} \boldsymbol{\alpha}_{s} = \mathbf{0}
\end{aligned}
$$
请证明向量组 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{s}$ 线性无关。
难度评级:
继续阅读“借助函数或数列的思想研究向量的变化过程”