一、题目
已知,方程 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4 y$ $=$ $\mathrm{e}^{-2 x}$ 满足条件 $y(0)=0$ 和 $y^{\prime}(0)=1$. 则该方程的特解为( )
难度评级:
继续阅读“特殊条件约束下的一般非齐次二阶线性微分方程特解的求解”已知,方程 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4 y$ $=$ $\mathrm{e}^{-2 x}$ 满足条件 $y(0)=0$ 和 $y^{\prime}(0)=1$. 则该方程的特解为( )
难度评级:
继续阅读“特殊条件约束下的一般非齐次二阶线性微分方程特解的求解”设 $f(x, y)$ 是连续函数, 则 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \mathrm{~d} x \int_{\sin x}^{1} f(x, y) \mathrm{~d} y=(\quad)$
(A) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$
(B) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$
(C) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$
(D) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$
难度评级:
继续阅读“2024年考研数二第06题解析:绘制积分区域,变换积分次序”已知函数 $f(x, y)$ $=$ $\left\{\begin{array}{l}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}, & x y \neq 0 \\ 0, & x y=0\end{array}\right.$, 则在点 $(0,0)$ 处
(A) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微
(B) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微
(C) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微
(D) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微
难度评级:
继续阅读“2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限”已知数列 $\left\{a_n\right\}\left(a_n \neq 0\right)$, 若 $\left\{a_n\right\}$ 发散, 则 ( )
(A) $\left\{a_n+\frac{1}{a_n}\right\}$ 发散
(B) $\left\{a_n-\frac{1}{a_n}\right\}$ 发散
(C) $\left\{e^{a_n}+\frac{1}{e^{a_n}}\right\}$ 发散
(D) $\left\{e^{a_n}-\frac{1}{e^{a_n}}\right\}$ 发散
难度评级:
继续阅读“2024年考研数二第04题解析:用特例法求解判断数列的敛散性”版本号:
GS-20250201(2025 考研高等数学二第 01 版)
01. 函数的极值
02. 极值存在的必要条件
03. 极值存在的充分条件
04. 极值存在的充要条件
05. 求函数最值得方法
06. 凹凸性得判定
07. 常见得特征点
08. 渐近线
09. 曲率、曲率半径、曲率圆
版本号:
GS-20250201(2025 考研高等数学二第 01 版)
计算下面这个式子的值:
$$
\begin{aligned}
I \\ \\
& = \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{-4}^{0} – \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{0}^{1} + \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{1}^{4}
\end{aligned}
$$
难度评级:
继续阅读“计算复杂但有规律的式子,要学会化繁为简,使计算过程充分清晰”版本号:
GS-20250201(2025 考研高等数学二第 01 版)
01. 一点处导数的定义
02. 左右导数
03. 导数的几何意义
04. 微分的定义
05. 导数的运算法则
06. 基本求导公式
07. 莱布尼兹公式
08. 可微的充要条件
09. 可导与连续的关系
10. 复合函数求导
11. 反函数求导
12. 隐函数求导
13. 变量交替求导
14. 参数方程求导
设函数 $f(x)$ $=$ $\int_{0}^{\sin x} \sin t^{3} \mathrm{~d} t$, $g(x)=\int_{0}^{x} f(t) \mathrm{~d} t$, 则 ($\quad$)
(A) $f(x)$ 是奇函数, $g(x)$ 是奇函数
(B) $f(x)$ 是奇函数, $g(x)$ 是偶函数
(C) $f(x)$ 是偶函数, $g(x)$ 是偶函数
(D) $f(x)$ 是偶函数, $g(x)$ 是奇函数
难度评级:
继续阅读“2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶”版本号:
GS-20250201(2025 考研高等数学二第 01 版)
01. 函数在一点处连续的定义
02. 第一类间断点
03. 第二类间断点
04. 闭区间上连续函数的定义
版本号:
GS-20250201(2025 考研高等数学二第 01 版)
01. 极限存在的充要条件
02. 极限存在的准则
03. 两类主要极限
04. $e$ 抬起
05. 极限的重要性质
06. 极限的四则运算法则
07. 无穷小量的运算性质
08. 极限与无穷小的关系
09. 无穷小的比较
10. 常用的等价无穷小
11. 几个重要极限
12. 洛必达法则
版本号:
GS-20250201(2025 考研高等数学二第 01 版)
01. 常见函数的图形
02. 因式分解
03. 常见不等式
04. 对数运算
05. 数列
06. 排列组合
07. 一元二次方程
08. 三角函数
09. 函数与反函数
10. 常用数值
11. 偶函数和奇函数
12. 虚数
13. 充分条件和必要条件
14. 补充内容
函数 $f(x)$ $=$ $|x|^{\frac{1}{(1-x)(x-2)}}$ 的第一类间断点的个数是 ( $\quad$ )
(A) $3$
(C) $1$
(B) $2$
(D) $0$
难度评级:
继续阅读“2024年考研数二第01题解析:第一类间断点、分段函数的分段点,无定义点”设 $f(x)$ $=$ $x^{2} \arcsin x-\int_{0}^{\pi} f(\sin x) \mathrm{~d} x$, 则 $\int_{0}^{\pi} f(\sin x) \mathrm{~d} x=?$
难度评级:
继续阅读“题目中没有给出的等式可以通过“嵌套”的方式构造出来”设连续函数 $f(x, y)=2 x+y-4+o\left(\sqrt{x^{2}+(y-1)^{2}}\right)$, 则 $\lim \limits_{t \rightarrow 0} \frac{f(\sin 2 t, 1)-f\left(0, \mathrm{e}^{-t}\right)}{t}=$
难度评级:
继续阅读“二元函数可微的判别式中隐含着一阶偏导数的值”