2011年考研数二第04题解析

题目

微分方程 $y^{”} – \lambda^{2}y = e^{\lambda x} + e^{- \lambda x} (\lambda > 0)$ 的特解形式为 $?$

$$
A. a (e^{\lambda x} + e^{- \lambda x})
$$

$$
B. ax (e^{\lambda x} + e^{- \lambda x})
$$

$$
C. x (ae^{\lambda x} + be^{- \lambda x})
$$

$$
D. x^{2} (ae^{\lambda x} + be^{- \lambda x})
$$

继续阅读“2011年考研数二第04题解析”

2012年考研数二第05题解析

题目

设函数 $f(x,y)$ 可微,且对于任意 $x,y$ 都有 $\frac{\partial f(x,y)}{\partial x}>0$, $\frac{\partial f(x,y)}{\partial y}<0$, 则使不等式 $f(x_{1}, y_{1})<f(x_{2}, y_{2})$ 成立的一个充分条件是 $?$

$$
A. x_{1} > x_{2}, y_{1} < y_{2}
$$

$$
B. x_{1} > x_{2}, y_{1} > y_{2}
$$

$$
C. x_{1} < x_{2}, y_{1} < y_{2}
$$

$$
D. x_{1} < x_{2}, y_{1} > y_{2}
$$

继续阅读“2012年考研数二第05题解析”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress