GitHub CEO Nat Friedman 回应限制伊朗等国用户账户事件

GitHub CEO Nat Friedman 于当地时间 07 月 27 日发布数条推文回应了 GitHub 限制部分被美国制裁的国家的用户使用 GitHub 一事。

以下是 Nat Friedman 的原推及参考译文。

原推 1:

It is painful for me to hear how trade restrictions have hurt people. We have gone to great lengths to do no more than what is required by the law, but of course people are still affected. GitHub is subject to US trade law, just like any company that does business in the US.

翻译 1:

当我听到贸易制裁伤害到了人们的时候,我感到很痛苦。我们竭尽全力使我们的行为符合法律的要求,但是确实有人仍然受到了伤害。就像许多在美国开展业务的公司一样,GitHub 必须服从美国法律。

原推 2:

To comply with US sanctions, we unfortunately had to implement new restrictions on private repos and paid accounts in Iran, Syria, and Crimea.

Public repos remain available to developers everywhere – open source repos are NOT affected.

翻译 2:

为了遵守美国的制裁,非常不幸的是,我们必须对伊朗,叙利亚和克里米亚地区的私有仓库和付过费的账户施加限制。

公开的仓库仍然对所有地区的开发者开放,开源项目的仓库不受影响。

原推 3:

The restrictions are based on place of residence and location, not on nationality or heritage. If someone was flagged in error, they can fill out a form to get the restrictions lifted on their account within hours.

More info is on our policy page: https://help.github.com/en/articles/github-and-trade-controls

翻译 3:

这些限制是基于居住地点的,而不是国籍。如果有人被错误地标记了,他们可以填写一个表格来在数小时之内解除这些限制。

更多的信息在我们的政策页面:https://help.github.com/en/articles/github-and-trade-controls

原推 4:

Users with restricted private repos can also choose to make them public. Our understanding of the law does not give us the option to give anyone advance notice of restrictions.

翻译 4:

被限制的用户可以选择把私有仓库开源。根据我们对法律的理解,我们没有在账户被限制之前提前通知用户的选项。

原推 5:

We’re not doing this because we want to; we’re doing it because we have to. GitHub will continue to advocate vigorously with governments around the world for policies that protect software developers and the global open source community.

翻译 5:

我们这样做不是因为我们想这样做,我们这样做是因为我们不得不这么做。

GitHub 将继续向世界上各个国家大力倡导保护软件开发人员和开源社区的政策。

注:以上英文“原推”内容来自 Nat Friedman 的推特” @natfriedman”, 中文译文仅供参考,如果译文与原文存在冲突,请以原文为准。

EOF

美国银行 Capital One 发生大规模数据泄露

美国银行 Capital One 在当地时间 07 月 29 日表示, 2019 年 07 月 19 日,该银行遭遇了未授权的访问并导致 1.06 亿美国人和加拿大人的账户受到影响。Capital One 随后向美国司法部门报告了这一情况,FBI 已经逮捕了一个名为 Paige Thompson 的嫌疑人,该人曾经为 AWS (Amazon Web Services) 工作,而 Capital One 正在使用该公司的云服务。根据 Capital One 方面的消息,Thompson 盗取了大约 140,000 个社会保障账号 (SSN),1 亿个加拿大社会保障账号 (SIN) 和 80,000 个银行账号。

亚马逊云服务(AWS)方面表示,AWS 与 Thompson 的雇佣关系已经于 2016 年结束,而且 Thompson 用于黑进 Capital One 的入口可以被任何人找到,Thompson 在这次行动中使用到的信息也不是其在为 AWS 工作期间获得的。

AWS 还表示,黑客此次黑进 Capital One 使用的漏洞是由于 Capital One 自己部署的 Web 应用程序配置错误导致的,不是由 AWS 云服务的底层基础设施的问题导致的漏洞。

Capital One 官网首页:

from: www.capitalone.com

考研英语中可能会用到的“学科”名词

humanities 人文学科

social sciences 社会科学

后缀:-logy

methodology 方法学;方法论

geology 地质学

sociology 社会学

psychology 心理学

biology 生物学

ecology 生态学

anthropology 人类学

ideology 观念学

neurology 神经病学

archaeology 考古学

physiology 生理学

astrology 占星学;原始天文学

astronomy 天文学

futurology 未来学

theology 神学

后缀:-graphy

demography 人口统计学

geography 地理学

后缀:-tics

robotics 机器人技术

aeronautics 航空学

genetics 遗传学

economics 经济学

mathematics 数学

physics 物理学

politics 政治

linguistics 语言学

studies of XXX

某某学科

2014 年研究生入学考试数学一选择题第 5 题解析

题目

行列式 $\begin{vmatrix} 0& a& b& 0\\ a& 0& 0& b\\ 0& c& d& 0\\ c& 0& 0& d \end{vmatrix}=$ ( )

$$( A ) (ad-bc)^{2}$$
$$( B ) -(ad-bc)^{2}$$
$$( C ) a^{2}d^{2}-b^{2}c^{2}$$
$$( D ) b^{2}c^{2}-a^{2}d^{2}$$

继续阅读“2014 年研究生入学考试数学一选择题第 5 题解析”

2014 年研究生入学考试数学一选择题第 2 题解析

题目

设函数 $f(x)$ 具有 $2$ 阶导数,$g(x)=f(0)(1-x)+f(1)x,$ 则在区间 $[0,1]$ 上 ( )

( A ) 当 $f'(x) \geqslant 0$ 时,$f(x) \geqslant g(x).$

( B ) 当 $f'(x) \geqslant 0$ 时,$f(x) \leqslant g(x)$.

( C ) 当 $f”(x) \geqslant 0$ 时,$f(x) \geqslant g(x)$.

( D ) 当 $f”(x) \geqslant 0$ 时,$f(x) \leqslant g(x)$.

继续阅读“2014 年研究生入学考试数学一选择题第 2 题解析”

GitHub 限制伊朗用户的账户

一位名叫 Hamed 的伊朗软件开发者近日发表了一篇文章 (GitHub blocked my account and they think I’m developing nuclear weapons), 文章中 Hamed 讲述了自己的 GitHub 账户被限制的经历。

Figure 1 是 Hamed 的 GitHub 个人页面截图,可以看到一段黄色的警示文字:

Figure 1. from https://medium.com/@hamed

Hamed 居住在伊朗,2012 年的时候,他开始使用 GitHub. 在 GitHub 于 2019 年 01 月宣布私有仓库免费之后,Hamed 更是将自己的项目都放到了 GitHub 上。虽然由于国际禁运的影响,Hamed 在参加完 Hacktoberfest 活动之后没能收到主办方发放的 T 恤衫,Hamed 也没觉得没有什么,毕竟他还可以继续使用 GitHub 提供的免费服务。

Hamed 收到的关于无法向他寄送 T 恤衫的邮件:

Figure 2. from https://medium.com/@hamed

但是,Hamed 却在 07 月 25 日突然收到了 GitHub 的邮件,告知他其 GitHub 账户已经被限制:

Figure 3. from https://medium.com/@hamed

根据 Hamed 的说法,GitHub 不仅限制了 Hamed 一个用户的账户,而是限制了所有伊朗用户,限制使用的功能包括代码仓库和 GitHub Pages.

GitHub 限制这些账户的理由是为了遵守美国的法律,因为 GitHub 是一家美国公司。但是这一事件也促使我们不得不思考,计算机科学技术领域的“自由”与“开放”的精神是否足够真实,这种“自由”与“开放”与国家的法律之间又该以怎样的方式共存?

2011 年研究生入学考试数学一填空题第 6 题解析

一、题目

设二维随机变量 $(X,Y)$ 服从正态分布 $N(\mu,\mu;\sigma^{2},\sigma^{2};0),$ 则 $E(XY^{2})=$____.

二、解析

由于在正态分布 $X \sim $ $N(\mu, \sigma^{2})$中 $E(X)=\mu$, $D(X)=\sigma^{2}.$ 而且二维正态分布中依然遵循这一定理。

于是,根据题目中的条件我们知道,$E(X)=$ $E(Y)=\mu$, $D(X)=$ $D(Y)=$ $\sigma^{2}.$

又由 $\rho=0$ 我们知道,$X$ 与 $Y$ 相互独立。根据随机变量的独立性中的如下性质:

若 $X_{1},X_{2},$ $\dots ,$ $ X_{n},$ $Y_{1},$ $Y_{2},$ $\dots ,$ $ Y_{m}$ 相互独立,$f(\cdot)$ 为 $n$ 元连续函数且 $g(\cdot)$ 为 $m$ 元连续函数,则 $f(X_{1},X_{2}, \cdots , X_{n})$ 与 $g(X_{1},X_{2}, \cdots , X_{m})$ 也相互独立。

因此,我们知道,$X$ 与 $Y^{2}$ 也相互独立,于是有:
$E(XY^{2})=$ $E(X)E(Y^{2})=$ $E(X) \times [D(Y)+E^{2}(Y)]=$ $\mu(\sigma^{2}+\mu^{2}).$

综上可知,本题的正确答案是:$\mu(\sigma^{2}+\mu^{2})$.

EOF

2015 年研究生入学考试数学一填空题第 6 题解析

一、题目

设二维随机变量$(X,Y)$ 服从正态分布 $N(1,0;1,1;0),P\{XY-Y<0\}=$____.

二、解析

解答本题需要掌握正态分布和二维正态分布两部分知识。

1. 正态分布

正态分布通常用下面的公式表示:

$$X \sim N(\mu,\sigma^{2}).$$

其中 $\mu$ 表示数学期望(或称“均数”),$\sigma^{2}$ 表示方差,$\sigma$ 表示标准差。

参数 $\mu$ 决定了正态分布的分布图像在坐标系中的位置,正态分布的图像以 $x$ $=$ $\mu$ 为对称轴,左右完全对称。在正态分布中,数学期望 $=$ 均数 $=$ 中位数 $=$ 众数 $=$ $\mu.$

参数 $\sigma^{2}$ 决定了正态分布中随机变量的离散程度,$\sigma$ 越小,数据就越集中,反之,若 $\sigma$ 越大,数据就越集中。反应在正态分布的图像中就是,当 $\sigma$ 越小的时候,正态分布的图像越窄高,$\sigma$ 越大的时候,正态分布的图像越扁平。

正态分布的图像在 $(\mu – \sigma, \mu + \sigma)$ 区间内存在拐点,拐点附近的形状上表现为中间高两边低的特点。

特别地,$X \sim N(0,1)$ 为标准正态分布,其分布图象关于 $y$ 轴对称。

如图 1 是几种不同的正态分布图像,反映了参数 $\mu$ 和 $\sigma$ 对正态分布图像的影响,其中红色线表示的为标准正态分布:

图 1. 由Inductiveload – self-made, Mathematica, Inkscape,公有领域,https://commons.wikimedia.org/w/index.php?curid=3817954

2. 二维正态分布

二维正态分布可记作如下形式:

$(X,Y)$ $\sim$ $N(\mu_{1},\mu_{2};\sigma_{1}^{2},\sigma_{2}^{2};\rho).$

在本题中,需要用到关于二维正态分布的如下两个性质:

① $X$ $\sim$ $N(\mu_{1},\sigma_{1}^{2})$; $Y$ $\sim N(\mu_{2},\sigma_{2}^{2})$;

② $X$ 与 $Y$ 独立的充要条件是 $\rho=0.$ 我们可以使用如下 MATLAB 代码绘制二维正态分布条件概率密度函数图像:

x=-5:0.01:5;
y=-5:0.01:5;
mu=[-1,2];
sigma=[1 1; 1 3]; %输入均值向量和协方差矩阵,可以根据需要修改
[X,Y]=meshgrid(x,y); %产生网格数据并处理
p=mvnpdf([X(:),Y(:)],mu,sigma);
P=reshape(p,size(X)); %求取联合概率密度
figure(2)
surf(X,Y,P)
shading interp
colorbar
title('二维正态分布条件概率密度函数图像');

我在 MATLAB R2016b 上运行上述代码得到的二维正态分布条件概率密度函数图像如图 2 所示:

图 2. 二维正态分布条件概率密度函数图像

关于本题所用到的知识点的介绍就到这里结束,下面是具体的做题过程。

由题可知,$\rho=0,$ 因此,$X$ 与 $Y$ 相互独立,根据“随机变量的独立性”中的定理,我们知道,这也就意味着:

$$P\{X,Y\}=P\{X\}P\{Y\}.$$

于是,我们有:

$P\{XY-Y<0\}$ $=$ $P\{Y(X-1)<0\}$ $=$ $P\{Y>0,X-1<0\}$ $+$ $P\{Y<0,X-1>0\}$ $=$ $P\{Y>0,X<1\}+P\{Y<0,X>1\}$ $=$ $P\{Y>0\}P\{X<1\}$ $+$ $P\{Y<0\}P\{X>1\}$ $=$ $\frac{1}{2}$ $\times$ $\frac{1}{2}$ $+$ $\frac{1}{2}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2}.$

综上可知,本题的正确答案是:$\frac{1}{2}$

EOF

2012 年研究生入学考试数学一选择题第 5 题解析

一、题目

设 $a_{1}$ $=$ $\begin{bmatrix} 0\\ 0\\ c_{1} \end{bmatrix}$, $a_{2}$ $=$ $\begin{bmatrix} 0\\ 1\\ c_{2}\end{bmatrix}$, $a_{3}$ $=$ $\begin{bmatrix} 1\\ -1\\ c_{3} \end{bmatrix}$, $a_{4}$ $=$ $\begin{bmatrix} -1\\ 1\\ c_{4}\end{bmatrix}$, 其中 $c_{1}$, $c_{2}$, $c_{3}$, $c_{4}$ 为任意常数,则下列向量组线性相关的为 ( )

( A ) $a_{1},a_{2},a_{3}.$

( B ) $a_{1},a_{2},a_{4}.$

( C ) $a_{1},a_{3},a_{4}.$

( D ) $a_{2},a_{3},a_{4}.$

二、解析

解答本题需要关于“线性相关”的知识。在向量组 $a_{1},a_{2},\dots a_{n}$ 线性相关的结论中,有这样一个结论:

$n$ 个 $n$ 维向量 $a_{1},a_{2}$, $\dots$ $a_{n}$ 线性相关 $\Leftrightarrow$ 行列式 $|a_{1},a_{2},\dots,a_{n}|=0.$

上面的结论中提到了 “$n$ 维向量”, 其实 “$n$ 维向量” 是两种向量的合称,第一种叫 “$n$ 维列向量”,即 $n$ 行 $1$ 列,形如:

$a=\begin{bmatrix}a_{1}\\ a_{2}\\ \vdots\\ a_{n}\end{bmatrix}.$
第二种叫 “$n$ 维行向量”,即 $1$ 行 $n$ 列,形如:

$b=\begin{bmatrix}b_{1},b_{2},\dots,b_{n}\end{bmatrix}.$
观察可知,题目中给出的是 $3$ 维列向量,选项中给出的向量的排布组合方式是横向的,因此组合形成的是 $3$ 行 $3$ 列的向量组,符合使用上述有关结论的条件。

此外,为了方便计算,这里还需要介绍一种计算行列式数值的简便方法,如下:
只要主对角线的两侧有任一侧有用 $0$ 填充的三角形就可以用下面的公式计算:

$\begin{bmatrix}\lambda_{1}& 0& 0\\ 0& \lambda_{2}&0\\ 0& 0& \lambda_{3}\end{bmatrix}=\begin{bmatrix}\lambda_{1}& \star& \star\\ 0& \lambda_{2}& \star\\ 0& 0& \lambda_{3}\end{bmatrix}=\begin{bmatrix}\lambda_{1}& 0& 0\\ \star& \lambda_{2}& 0 \\ \star& \star& \lambda_{3} \end{bmatrix}=\lambda_{1} \times \lambda_{2} \times \lambda_{3}.$

注:上述公式中 $\star$ 所在的区域表示该区域不是全部由 $0$ 填充。

只要副对角线的两侧有任一侧有用 0 填充的三角形就可以用下面的公式计算:

$\begin{bmatrix}0& 0& \lambda_{1}\\ 0& \lambda_{2}&0\\ \lambda_{3}& 0& 0\end{bmatrix}=\begin{bmatrix}\star& \star& \lambda_{1}\\ \star& \lambda_{2}& 0\\ \lambda_{3}& 0& 0\end{bmatrix}=\begin{bmatrix}0& 0& \lambda_{1}\\ 0& \lambda_{2}& \star \\ \lambda_{3}& \star& \star \end{bmatrix}=(-1)^{\frac{n(n-1)}{2}} \times \lambda_{1} \times \lambda_{2} \times \lambda_{3}.$

注:上述公式中 $\star$ 所在的区域表示该区域不是全部由 $0$ 填充。

下面开始逐个选项进行计算并判断相关性。

A 项:

$\begin{vmatrix}0& 0& 1\\ 0& 1& -1\\ c_{1}& c_{2}& c_{3}\end{vmatrix}=(-1)^{\frac{3 \times 2}{2}}\times1\times1\times c_{1}=-c_{1}.$

当 $-c_{1} \neq 0$ 时,$a_{1},a_{2},a_{3}$ 的线性相关不成立。

B 项:

$\begin{vmatrix}0& 0& -1\\ 0& 1& 1\\ c_{1}& c_{2}& c_{4}\end{vmatrix}=(-1)^{\frac{3\times2}{2}}\times (-1) \times 1 \times c_{1}=c_{1}.$
当 $c_{1} \neq 0$ 时,$a_{1},a_{2},a_{4}$ 的线性相关不成立。

C 项:

$\begin{vmatrix}0& 1& -1\\ 0& -1& 1\\ c_{1}& c_{3}& c_{4}\end{vmatrix}=c_{1}-c_{1}=0, 恒成立.$

$a_{1},a_{3},a_{4}$ 的线性相关性恒成立。

D 项:

$\begin{vmatrix}0& 1& -1\\ 1& -1& 1\\ c_{2}& c_{3}& c_{4}\end{vmatrix}=c_{2}-c_{3}-c_{2}-c_{4}=-c_{3}-c_{4}.$

当 $-c_{3}-c_{4} \neq 0$ 时,$a_{2},a_{3},a_{4}$ 的线性相关不成立。

综上可知,本题的正确选项是:C

EOF

2010 年研究生入学考试数学一填空题第 6 题解析

一、题目

设随机变量 $X$ 的概率分布为 $P{X=k}=\frac{C}{k!},k=0,1,2,\dots.$, 则 $E(X^{2})=$__.

二、解析

根据题目中给出的分布函数(概率分布函数)的形式,我们可以知道,这是一个泊松分布。

泊松分布的公式如下:

$P{X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$, $(k=0,1,2,\dots).$

于是我们有:

$C$ $=$ $\lambda^{k}e^{-\lambda}.$

由于在泊松分布中,$D(X)$ $=$ $E(X)$ $=$ $\lambda.$

而且我们知道 $D(X)$ 和 $E(X)$ 有如下关系:

$D(X)$ $=$ $E(X^2)-E^{2}(X)$ $\Rightarrow$ $E(X^{2})$ $=$ $D(X)$ $+$ $E^{2}(X)$ $=$ $\lambda$ $+$ $\lambda^{2}.$

因此,只要我们求出 $\lambda$ 的数值,也就是用 $C$ 表示出 $\lambda$ 就可以解出答案。

但是,这个思路是走不通的,一是因为通过 $C=\lambda^{k}e^{-\lambda}$ 用 $C$ 表示出 $\lambda$ 的计算十分复杂,其二是因为即便能够用 $C$ 表达出 $\lambda$, 那么表达式中也会含有未知变量 $k$.

因此可知,这道题还需要找一些隐含的条件,走另外的解题思路。

既然从源头开始想出来的解题思路有问题,那么我们就倒着想,看看为了计算出最终的结果,我们需要哪些条件。我们可以确定的是,无论采取哪种方法,要想解出 $E(X^{2})$, 就必须知道 $D(X)$ 和 $E^{2}(X)$, 因此(根据泊松分布的特性)我们需要知道 $\lambda$ 的数值,而要知道 $\lambda$ 的数值必然需要通过已知的常数 $C$ 来确定,根据公式,$C$ 与 $\lambda$ 同时出现的情况只在下面这个公式中存在:

$\frac{C}{k!}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}.$

但是,上面这个公式中存在一个未知量 $k.$

至此,无论我们接下来采取什么解题思路,一个首要的问题就是要移除未知量 $k$ 这个障碍。

如何移除呢?题目中并没有给出 $k$ 的值,也没有可供解出 $k$ 的关系式。不过,既然要解出 $k$ 就先来想想 $k$ 的含义吧。

在泊松分布的定义中,$X$ 是随机变量,由泊松分布公式中的 “$P{X=k}$” 我们知道,$k$ 就是用来给 $X$ 赋值的,不同的 $k$ 值对应不同的概率,而 $k$ 的取值范围是 $0,1,2,\dots n.$ 根据概率分布函数的特点我们知道,在一次随机实验中,一定会有一个随机变量发生,如果我们手里有全部的随机变量,那么在任何一次实验中都会有一个随机变量在我们手里发生,从整体上看这就是一个必然事件。

于是,我们知道,如果让 $k$ 取到所有可能取到的值并计算概率,之后把这些概率相加,那么和一定是 $1$, 即:

$\sum_{k=0}^{\infty}$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\sum_{k=0}^{\infty}$ $\frac{C}{k!}$ $=$ $C\sum_{k=0}^{\infty}\frac{1}{k!}$ $=1.$

这里需要我们知道一个额外的知识点,就是自然常数(自然对数的底数) $e$ 的表示方法。

$e$ 有两种表示方法,如下:

方法一:$e=\lim_{n \rightarrow \infty}(1+\frac{1}{n})^{n}.$

方法二:$e=\sum_{n=0}^{\infty}\frac{1}{n!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\dots\frac{1}{n!}.$

注意:$0!=1.$

于是,我们有:

$C\sum_{k=0}^{\infty}$ $\frac{1}{k!}$ $=$ $Ce$ $=$ $1$ $\Rightarrow C$ $=$ $\frac{1}{e}$ $=$ $e^{-1}.$

又因为 $C$ $=$ $\lambda^{k}e^{-\lambda},$ 我们有:

$\lambda^{k}e^{-\lambda}$ $=$ $e^{-1}.$

于是有:

$\lambda$ $=$ $1$, $k=1.$

到这里就解出 $\lambda$ 的数值了,再结合前面的分析,我们就可以解出 $E(X^{2}):$

$E(X^2)$ $=$ $\lambda+\lambda^{2}$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2.$

综上可知,本题的正确答案是:$2$

EOF

2012 年研究生入学考试数学一填空题第 6 题解析

一、题目

设 $A,B,C$ 是随机事件,$A$ 与 $C$ 互不相容,$P(AB)$ $=$ $\frac{1}{2}$, $P(C)$ $=$ $\frac{1}{3}$, 则 $P(AB|\bar{C})$ $=$__.

二、解析

$A$与 $C$ 互不相容 $\Rightarrow$ $A$ $\cap$ $C$ $=$ $\phi$ $\Rightarrow$ $P(AC)$ $=$ $P(\phi)$ $=$ $P(\phi \cap B)$ $\Rightarrow$ $P(AC \cap B)$ $=$ $0$.

于是,我们有:

$P(AB|\bar{C})$ $=$ $\frac{P(AB \bar{C})}{P(\bar{C})}$ $=$ $\frac{P[AB(1-C)]}{1-P(C)}$ $=$ $\frac{P(AB-ABC)}{1-P(C)}$ $=$ $\frac{P(AB)-P(AB \cap ABC)}{1-P(C)}$ $=$ $\frac{P(AB)-P(ABC)}{1-P(C)}$ $=$ $\frac{\frac{1}{2}-0}{\frac{2}{3}}$ $=$ $\frac{1}{2}$ $\times$ $\frac{3}{2}$ $=$ $\frac{3}{4}$.

综上可知,正确答案:$\frac{3}{4}$.

EOF

2008 年研究生入学考试数学一选择题第 6 题解析

一、题目

设随机变量 $X$ 服从参数为 $1$ 的泊松分布,则 $P {X=E(X^{2})}$ $=$__.

二、解析

每年考研数学一试卷中填空题的最后一题基本都是考一个概率论中的知识。本题考察的知识很明确,就是:泊松分布。

泊松分布的概念如下:

设随机变量 $X$ 的概率分布为:


$P {X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $(\lambda>0,k=0,1,2,3 \dots)$


则称 $X$ 服从参数为 $\lambda$ 的泊松分布,记为 $X$ $\backsim$ $P(\lambda)$.

此外,在泊松分布中,数学期望 $E(X)$ $=$ $\lambda$, 方差 $D(X)$ $=$ $\lambda$.

最后,我们还需要知道 $E(X)$ 与 $D(X)$ 的关系公式:

$D(X)$ $=$ $E(X^{2})$ $-$ $[E(X)]^{2}$.

由题目信息可知,该题中泊松分布的参数 $\lambda=1$, 于是我们知道:

$E(X)$ $=$ $D(X)$ $=$ $1$.

由于题目中要求的表达式中含有 “$E(X^{2})$”, 而在 $E(X)$ 与 $D(X)$ 的关系式中也含有 “$E(X^{2})$”, 于是,我们有:

$E(X^{2})$ $=$ $D(X)$ $+$ $[E(X)]^{2}$.

进而有:

$E(X^{2})$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2$.

于是,我们要求的表达式就变成了:

$P{X=E(X^{2})}$ $\Rightarrow$ $P{X=2}$.

至此,我们已经知道了泊松分布的计算公式中的两个未知量的数值,分别是:

$\lambda$ $=$ $1$, $k$ $=$ $E(X^{2})$ $=$ $2$.

于是,根据泊松分布的计算公式,我们有:

$P$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\frac{1^{2}e^{-1}}{2!}$ $=$ $\frac{e^{-1}}{2 \times 1}$ $=$ $\frac{1}{e}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2e}$.

综上可知,正确答案就是:$\frac{1}{2e}$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress