一、题目
求下面函数的 $n$ 阶导数:
$$
\begin{aligned}
y_{1} & = \sin x \\
y_{2} & = \cos x \\
y_{3} & = \frac{1}{x + 1}
\end{aligned}
$$
难度评级:
二、解析
用归纳法求解函数 $n$ 阶的主线任务就是:
- 至少要求解出来一阶导、二阶导和三阶导;
- 尽可能减少求解出来的不同阶的导数的不同部分,增加其相同部分。
$y_{1}$
Note
对 $y_{1}$ 的求导归纳需要用到三角函数的“奇变偶不变,符号看象限”原则。
zhaokaifeng.com
已知:
$$
y_{1} = \sin x
$$
又因为:
$$
\begin{aligned}
y_{1}^{\prime} & = \cos x \\ \\
& = \sin \left( x + \textcolor{orangered}{1 \cdot \frac{\pi}{2} } \right) \\ \\
& = \textcolor{springgreen}{ \sin \left( x + \frac{\pi}{2} \right) } \\ \\ \\
y_{1}^{\prime \prime} & = \left[ \sin \left( x + \frac{\pi}{2} \right) \right]^{\prime} \\ \\
& = \cos \left( x + \frac{\pi}{2} \right) \\ \\
& = \sin \left( x + \frac{\pi}{2} + \textcolor{orangered}{1 \cdot \frac{\pi}{2} } \right) \\ \\
& = \textcolor{springgreen}{ \sin \left( x + 2 \cdot \frac{\pi}{2} \right) } \\ \\ \\
y_{1}^{\prime \prime \prime} & = \left[ \sin \left( x + 2 \cdot \frac{\pi}{2} \right) \right] ^{\prime} \\ \\
& = \cos \left( x + 2 \cdot \frac{\pi}{2} \right) \\ \\
& = \cos \left( x + 2 \cdot \frac{\pi}{2} + \textcolor{orangered}{1 \cdot \frac{\pi}{2}} \right) \\ \\
& = \textcolor{springgreen}{ \sin \left( x + 3 \cdot \frac{\pi}{2} \right) }
\end{aligned}
$$
于是,根据数学归纳法,可得:
$$
\textcolor{springgreen}{
\boldsymbol{
y_{1}^{(n)} = (\sin x)^{(n)} = \sin \left(x + n \cdot \frac{\pi}{2} \right)
}
}
$$
事实上,如果 $k$, $b$ 为常数,则:
$$
\textcolor{yellow}{\Large{\boldsymbol{\star}}} \quad
\textcolor{orange}{
\boldsymbol{
\sin ^{(n)} (k x + b) = k^{n} \sin \left( kx + n \cdot \frac{\pi}{2} + b \right)
}
}
$$
$y_{2}$
Note
对 $y_{2}$ 的求导归纳需要用到三角函数的“奇变偶不变,符号看象限”原则。
zhaokaifeng.com
已知:
$$
y_{2} = \cos x
$$
又因为:
$$
\begin{aligned}
y_{2}^{\prime} & = – \sin x \\ \\
& = \cos \left( x + \textcolor{orangered}{1 \cdot \frac{\pi}{2}} \right) \\ \\
& = \textcolor{springgreen}{ \cos \left( x + \frac{\pi}{2} \right) } \\ \\ \\
y_{2} ^{\prime \prime} & = \left[ \cos \left( x + \frac{\pi}{2} \right) \right] ^{\prime} \\ \\
& = – \sin \left( x + \frac{\pi}{2} \right) \\ \\
& = \cos \left( x + \frac{\pi}{2} + \textcolor{orangered}{1 \cdot \frac{\pi}{2}} \right) \\ \\
& = \textcolor{springgreen}{ \cos \left( x + 2 \cdot \frac{\pi}{2} \right) } \\ \\ \\
y_{2} ^{\prime \prime \prime} & = \left[ \cos \left( x + 2 \cdot \frac{\pi}{2} \right) \right] ^{\prime} \\ \\
& = – \sin \left( x + 2 \cdot \frac{\pi}{2} \right) \\ \\
& = \cos \left( x + 2 \cdot \frac{\pi}{2} + \textcolor{orangered}{1 \cdot \frac{\pi}{2}} \right) \\ \\
& = \textcolor{springgreen}{ \cos \left( x + 3 \cdot \frac{\pi}{2} \right) }
\end{aligned}
$$
于是,根据数学归纳法,可得:
$$
\textcolor{springgreen}{
\boldsymbol{
y_{2}^{(n)} = (\cos x)^{(n)} = \cos \left( x + n \cdot \frac{\pi}{2} \right)
}
}
$$
事实上,如果 $k$, $b$ 为常数,则:
$$
\textcolor{yellow}{\Large{\boldsymbol{\star}}} \quad
\textcolor{orange}{
\boldsymbol{
\cos ^{(n)} (k x + b) = k^{n} \cos \left( kx + n \cdot \frac{\pi}{2} + b \right)
}
}
$$
$y_{3}$
已知:
$$
y_{3} = \frac{1}{x + 1}
$$
又因为:
$$
\begin{aligned}
y_{3}^{\prime} & = \textcolor{springgreen}{ \frac{-1}{(1+x)^{2}} } \\ \\ \\
y_{3}^{\prime \prime} & = \left[ \frac{-1}{(1+x)^{2}} \right] ^{\prime} \\ \\
& = \frac{- (-1) 2(1+x)}{(1+x)^{4}} \\ \\
& = \textcolor{springgreen}{ \frac{(-1)(-2)}{(1+x)^{3}} } \\ \\ \\
y_{3}^{\prime \prime \prime} & = \left[ \frac{(-1)(-2)}{(1+x)^{3}} \right] ^{\prime} \\ \\
& = \frac{-(-1) (-2) 3 (1+x)^{2}}{(1+x)^{6}} \\ \\
& = \textcolor{springgreen}{ \frac{(- 1)(-2)(-3)}{(1+x)^{4}} }
\end{aligned}
$$
于是,根据数学归纳法,可得:
$$
\textcolor{springgreen}{
\boldsymbol{
y_{3}^{(n)} = \frac{(-1)^{n} \times n! }{(1+x)^{n+1}}
}
}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!