2011 年研究生入学考试数学一选择题第 1 题解析

一、题目

曲线 $y$ $=$ $(x-1)$ $(x-2)^{2}$ $(x-3)^{3}$ $(x-4)^{4}$ 的拐点是 ( )

( A ) $(1,0)$.

( B ) $(2,0)$.

( C ) $(3,0)$.

( D ) $(4,0)$.

二、解析

本题主要涉及求导,曲线的凹凸性,曲线凹凸性的判定,拐点的定义,拐点存在的充分条件这些知识。

曲线凹凸性的定义如下:

设函数 $f(x)$ 在区间 $I$ 上连续,若对 $I$ 上任意两点 $x_{1}$, $x_{2}$, 恒有:

$f(\frac{x_{1}+x_{2}}{2})$ $<$ $(>)$ $\frac{f(x_{1})+f(x_{2})}{2}$,

则称曲线 $y$ $=$ $f(x)$ 在区间 $I$ 上是向凹(凸)的.

曲线凹凸性的判定如下:

设函数 $f(x)$ 在 $[a,b]$ 上连续,在 $(a,b)$ 内具有二阶导数,那么:

① 如果在 $(a,b)$ 内 $f”(x)$ $>$ $0$, 则曲线 $y$ $=$ $f(x)$ 在 $[a,b]$ 上是凹的;

② 如果在 $(a,b)$ 内 $f”(x)$ $<$ $0$, 则曲线 $y$ $=$ $f(x)$ 在 $[a,b]$ 上是凸的.

拐点的定义如下:

设函数 $f(x)$ 在区间 $I$ 内连续,$x_{0}$ 是 $I$ 的内点,如果曲线 $y$ $=$ $f(x)$ 在经过点 $(x_{0},$ $f(x_{0}))$ 时凹凸性发生了改变,则称点 $(x_{0},$ $f(x_{0}))$ 为曲线的拐点.

拐点存在的充分条件如下:

第一充分条件:若曲线 $y$ $=$ $f(x)$ 在 $x$ $=$ $x_{0}$ 处 $f”(x_{0})$ $=0$ (或 $f”(x_{0})$ 不存在,但 $f(x)$ 在 $x$ $=$ $x_{0}$ 处连续),若 $f”(x)$ 在 $x_{0}$ 的左右两侧邻域异号,则 $(x_{0},$ $f(x_{0}))$ 为曲线 $y$ $=$ $f(x)$的拐点.
第二充分条件:设 $f(x)$ 在 $x$ $=$ $x_{0}$ 的某邻域内有三阶导数,且 $f”(x_{0})$ $=$ $0$, $f”'(x_{0})$ $\neq$ $0$, 则 $(x_{0},$ $f(x_{0}))$ 为 $f(x)$ 的拐点.

回到本题。本题的原式是:

$y$ $=$ $(x-1)$ $(x-2)^{2}$ $(x-3)^{3}$ $(x-4)^{4}$.

观察可知,当 $x$ $=$ $1$, $2$, $3$, $4$ 时都可以使 $y$ $=$ $0$, 而我们在找拐点的时候,最重要的就是找到哪个点是大于零的,哪个点是小于零的或者哪个点是等于零的,上面式子的设定从计算上来看可以很快地找到这些特殊点。

求拐点的过程中少不了要计算导数,但是上面的式子太长,求导之后会更长,为了方便计算,尽可能避免出错,我们作如下约定:

令:

$A$ $=$ $(x-1)$;

$B$ $=$ $(x-2)^{2}$;

$C$ $=$ $(x-3)^{3}$;

$D$ $=$ $(x-4)^{4}$.

之后,我们有:

原式 $=$ $y$ $=$ $ABCD$.

于是我们有:

$y’$ $=$ $A’BCD$ $+$ $A(BCD)’$;

$y”$ $=$ $A”BCD$ $+$ $A'(BCD)’$ $+$ $A'(BCD)’$ $+$ $A(BCD)”$;

$y”’$ $=$ $A”’BCD$ $+$ $A”(BCD)’$ $+$ $A”(BCD)’$ $+$ $A'(BCD)”$ $+$ $A”(BCD)’$ $+$ $A’BCD”$ $+$ $A'(BCD)”$ $+$ $A(BCD)”’$;

令 $y’$ $=$ $0$, 则有:

$y'(2)$ $=$ $y'(3)$ $=$ $y'(4)$ $=$ $0$;

$y'(1)$ $\neq$ $0$. ($x$ $=$ $1$ 对应 $A$, 但是 $A’$ 是一个常数,不受 $x$ 的影响,因此 $x$ $=$ $1$ 不会使 $y’$ $=$ $0$, 以下计算过程中的判断与此类似.)

令 $y”$ $=$ $0$, 则有:

$y”(3)$ $=$ $y”(4)$ $=$ $0$;

$y”(1)$ $\neq$ $0$, $y”(2)$ $\neq$ $0$.

令 $y”’$ $=$ $0$, 则有:

$y”'(4)$ $=$ $0$;

$y”'(1)$ $\neq$ $0$, $y”'(2)$ $\neq$ $0$, $y”'(3)$ $\neq$ $0$.

通过上面的计算我们知道,$y”(3)$ $=$ $0$ 且 $y”'(3)$ $\neq$ $0$, 因此,根据拐点存在的充分条件中的第二充分条件,点 $(3,0)$ 是曲线 $y$ 的拐点。

综上可知,本题的正确选项是:C

EOF