换元积分法(B006)

问题

设 $\int$ $f(u)$ $\mathrm{d}$ $u$ $=$ $F(u)$ $+$ $C$, 则:
$\textcolor{Orange}{\int}$ $\textcolor{Orange}{f[\phi (x)] \phi ^{\prime} (x)}$ $\textcolor{Orange}{\mathrm{d} x}$ $\textcolor{White}{=}$ $?$

选项

[A].   $\int$ $f[\phi (x)] \phi ^{\prime} (x)$ $\mathrm{d} x$ $=$ $F[\phi(x)]$

[B].   $\int$ $f[\phi (x)] \phi ^{\prime} (x)$ $\mathrm{d} x$ $=$ $F[\phi(x)]$ $+$ $C$

[C].   $\int$ $f[\phi (x)] \phi ^{\prime} (x)$ $\mathrm{d} x$ $=$ $F(x)$ $+$ $C$

[D].   $\int$ $f[\phi (x)] \phi ^{\prime} (x)$ $\mathrm{d} x$ $=$ $f[\phi(x)]$ $+$ $C$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$$\int \textcolor{Red}{f[\phi (x)] \phi ^{\prime} (x)} \mathrm{d} \textcolor{Yellow}{x} =$$ $$\int f[\phi(x)] \mathrm{d} [\phi(x)]$$ $$\textcolor{Orange}{\xrightarrow[]{u = \phi(x)}}$$ $$\int \textcolor{Red}{f(u)} \mathrm{d} \textcolor{Yellow}{u} =$$ $$\textcolor{Red}{F(u)} + \textcolor{Green}{C} =$$ $$\textcolor{Red}{F[\phi(x)]} + \textcolor{Green}{C}.$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress