2014年考研数二第14题解析

题目

设二次型 $f(x_{1}, x_{2}, x_{3}) = x_{1}^{2} – x_{2}^{2} + 2a x_{1}x_{3} + 4 x_{2}x_{3}$ 的负惯性指数是 $1$, 则 $a$ 的取值范围为 $?$

解析

由题可知,二次型 $f$ 的矩阵 $A=$

$$
\begin{vmatrix}
1 & 0 & a\\
0 & -1 & 2\\
a & 2 & 0
\end{vmatrix}
\Rightarrow
$$

$$
\begin{vmatrix}
1 & 0 & a\\
0 & -1 & 2\\
a & 0 & 4
\end{vmatrix}
\Rightarrow
$$

$$
\begin{vmatrix}
1 & 0 & a\\
0 & -1 & 2\\
0 & 0 & 4-a^{2}
\end{vmatrix}
$$

所以,$A$ 的特征值为:

$$
1, -1, 4-a^{2}.
$$

又因为,二次型 $f$ 的负惯性指数为 $1$, 因此,只能有:

$$
4-a^{2} \geqslant 0 \Rightarrow
$$

$$
4 \geqslant a^{2} \Rightarrow
$$

$$
2 \geqslant a \geqslant -2.
$$

注意:考虑取值或者取值范围的时候,要多想一想能不能取到 $0$, 有时候,极易忽略取值为 $0$ 的情况。

综上可知,正确答案为 $[-2, 2]$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress